资源描述
上课日期
时间
学生姓名
王文立
上课类型
(1对1)
教师
汪慧影
教室(class5)
课题:有理数及其运算
教学目标:1、掌握正数、负数的概念。
2、会计算一个数的相反数、绝对值以及倒数。
3、掌握有理数的运算法则。
4、会运用有理数解决实际问题。
教学重点:1、正数、负数的判别方法。
2、有理数的两种分类方法。
3、绝对值、相反数的计算。
4、数轴的三要素。
5、有理数的加减、乘除运算法则。
6、科学计数法
教学难点:1、正数、负数的判别。
2、绝对值的计算。
3、有理数的运算法则。
教学过程:
一、数的扩充:
数1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;正整数、负整数和零统称为整数;数,,8,+5.6,…叫做正分数;―,―,―3.5,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。
二、有理数的分类
不同的分类标准可以将有理数进行不同的分类:
①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:
②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:
注:①“0”也是自然数。②“0”的特殊性。
把一些数放在一起,就组成一个数的集合,简称数集(set of number)。所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。
三、数轴
定义:规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。
例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?
例2:把下面各小题的数分别表示在三条数轴上:
(1)2,-1,0,,+3.5
(2)―5,0,+5,15,20;
(3)―1500,―500,0,500,1000。
分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,
注意:(1)数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;
(2)画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。
(3)比较有理数大小法则是:在数轴上表示的两个数,右边的数总比左边的数大。根据法则先在同一个数轴上表示出同一组数的位置,然后用“<”号连接,这种方法比较直观,但画图表示数较麻烦。另一种方法是利用数轴上数的位置得出比较大小规律,即正数都大于0,负数都小于0,正数大于一切负数,则比较更方便些。
四、相反数
象这样只有符号不同的两个数称互为相反数 (opposite number)。
理解:
代数定义:只有符号不同的两个数互为相反数。0的相反数是0。
几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。0的相反数是0。
说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。“0的相反数是0”是相反数定义的一部分。这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。
例3:判断下列说法是否正确:
①―5是5的相反数; ( ) ③5与―5互为相反数; ( ) ④―5是相反数; ( ) ⑤正数的相反数是负数,负数的相反数是正数。
例4:(1)分别写出5、―7、―3、+11.2的相反数;
(2)指出―2.4各是什么数的相反数。
注意:(1)只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点;
(2)相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的;
(3)正号“+”的功能是对一个数的符号予以确认;而负号“―”的功能是对一个数的符号予以改变。
五、绝对值
(1)我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值( absolute value )。记作|a|。
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。同样可知|―4|=4,|+1.7|=1.7。
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律:
1. 一个正数的绝对值是它本身;2. 0的绝对值是0;3. 一个负数的绝对值是它的相反数。
即:①若a>0,则|a|=a; ②若a<0,则|a|=–a;
③若a=0,则|a|=0; 或写成:。
(2)绝对值的非负性:
由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0。
例5:求下列各数的绝对值:,,―4.75,10.5
例6: 化简:(1); (2)。解:(1) ; (2) 。
分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。在(3)中要注意区分绝对值符号与括号的不同含义。
注意:(1)对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
(2)求一个数的绝对值注意先判断这个数是正数还是负数。
例7:比较下列各对数的大小:
①-0.3与; ②与0; ③ 与
解:(1)这是两个负数比较大小,
∵|―0.3|=0.3,,且 0.3 < , ∴。
说明:①要求学生严格按此格式书写,训练学生逻辑推理能力;
②注意符号“∵”、“∴”的写法、读法和用法;
③对于两个负数的大小比较可以不必再借助于数轴而直接进行;
④异分母分数比较大小时要通分将分母化为相同。
六、有理数的运算
(1)有理数的加法法则:
1. 同号两数相加,取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
3. 互为相反数的两个数相加得0;
4. 一个数同0相加,仍得这个数.
注意:
一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。
例8:计算:
①(+20)+(+12); ②; ③(―3.4)+4.3。
④(-7)+(+7)⑤(+7)+0
加法交换律:两个数相加,交换加数的位置,和不变。即 a + b = b + a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
即 ( a + b )+ c = a + ( b + c )
这样,多个有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,使计算简化。
例9:计算:
(1) (+26)+(―18)+5+(―16); (2) 。
三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的位置,简化运算。常见技巧有:
(1)凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加;
(2)同号集中:按加数的正负分成两类分别结合相加,再求和;
(3)同分母结合:把分母相同或容易通分的结合起来;
(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加。注意带分数拆开后的两部分要保持原来分数的符号。
(2)有理数减法法则:减去一个数,等于加上这个数的相反数。
如果用字母 a、b表示有理数,那么有理数减法法则可表示为:a – b = a +(―b)。
例10:计算:
(1)(―32)―(+5); (2)7.3―(―6.8);
注意:(1)由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
(2)不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。
(3)因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便。但要注意交换加数的位置时,要连同前面的符号一起交换。
(3) 有理数乘法法则:
3×(―2)=? (―3)×(―2)=?
一般地,我们有:把一个因数 换成它的相反数,所得的积是原来的积的相反数.
④综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0
例11:计算:①(-5)×(-6) ②
有理数乘法运算律:
③总结:让学生总结出乘法的交换律、结合律。
乘法交换律:两个数相乘,交换因数的位置,积不变。即 a b = b a
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。即(ab)c=a(bc) ④根据乘法交换律和结合律可以推出:三个以上有理数相乘,可以任意交换乘数的位置,也可以先把其中的几个数相乘.
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即a(b+c)=ab+ac.
例12:①计算:(―10) ××0.1×6。
例13:计算:①4×(―8)+(―5)×(―8)+16; ②。
解:①原式=24
(4)有理数除法
倒数的概念:乘积是1的两个数互为倒数(reciprocal)。
例14: (1) ; (2) ; (3) 。
解:①原式=;
②原式=;
③原式=
这样,对有理数除法,一般有
有理数除法则:除以一个数等于乘上这个数的倒数.
注意:0不能作除数.
探讨总结出有理数除法类似有理数乘法的法则:
因为除法可化为乘法,所以有理数的除法有与乘法类似的法则:
两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不等于0的数,都得0.
(1) (―)÷(―); (2) ; (3)。
(5)有理数的乘方
一般地,我们有:n个相同的因数a 相乘,即,记作。
例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4。
这种求几个相同因数的积的运算,叫做乘方(involution),
乘方的结果叫做幂(power)。在an中,a叫作底数,n叫做指数,
an 读作a的n次方,an看作是a的n次方的结果时,也可
读作a的n次幂。
例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂。
一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写。
当a>0时,an>0(n是正整数); 当a<0时,;
当a=0时,an=0(n是正整数) (以上为有理数乘方运算的符号法则)
a2n=(―a)2n(n是正整数);=―(―a)2n-1(n是正整数);a2n≥0(a是有理数,n是正整数)。
七、科学记数法
(1)任何一个数都可以表示成整数数位是一位数的数乘以10的n次幂的形式。
如:100=1×100=1×102;600=6×1000=6×103;7500=7;5×1000=7.5×103。
(2)科学记数法定义:
一般地,把一个大于10的数记成a×的形式,其中a 是整数数位只有一位的数(即1≤a<10),n是正整数,这种记数法叫做科学记数法。
例15:用科学记数法记出下列各数:
(1)696 000; (2)1 000 000; (3)58 000; (4)―7 800 000。
八、有理数的混合运算(1)
定义:含有有理数的加减乘除乘方多种运算,称为有理数的混合运算。
2.有理数混合运算的运算顺序规定如下:
①先算乘方,再算乘除,最后算加减;
②同级运算,按照从左至右的顺序进行;
③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
例16:计算:解:原式。
这里要注意三点:
①小括号先算;
②进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法;
③同级运算,按从左往右的顺序进行,这一点十分重要。
例17:计算:
分析:揭示思路:本例按常规运算顺序,应先算小括号里的减法,运算较繁,观察算式中的数字特征,可发现首尾两数互为倒数,根据这一迹像,抓住算式的结构特点及数与数之间的关系,利用运算定律,适当改变运算顺序,可得如下新颖解法:
解原式===8―3=5
九、近似数和有效数字
概括:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
②有效数字:
这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significant digits)。
象上面我们取1.667为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字1、6、6、7。
例18:下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?
(1)132.4; (2)0.0572; (3)2.40万
解:(3)2.40万精确到百位,共有3个有效数字2、4、0。
注意:由于2.40万的单位是万,所以不能说它精确到百分位.。
例2:用四舍五入法,按括号中的要求把下列各数取近似数。
(1)0.34082(精确到千分位); (2)64.8 (精确到个位); (3)1.504 (精确到0.01);
(4)0.0692 (保留2个有效数字); (5)30542 (保留3个有效数字)。
注意:(1)例2的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;
(2)例2的(5)中,如果把结果写成30500,就看不出哪些是保留的有效数字,所以我们用科学记数法,把结果写成3.05×104。
(3)有一些量,我们或者很难测出它的准确值,或者没有必要算得它的准确值,这时通过粗略的估算就能得到所要的近似数,有时近似数也并不总是按“四台五入”法得到的。
十、用计算器进行数的简单运算
例1:①用计算器求345+21.3。
用计算器进行四则运算,只要按算式的书写顺序按键,输入算式,再按等号键,显示器上就显示出计算结果。
课后练习:单科集训P34填空、计算
教学反思:
8 / 8
展开阅读全文