收藏 分销(赏)

工业窑炉的设计(输送装置)毕业设计论文.doc

上传人:可**** 文档编号:2148398 上传时间:2024-05-20 格式:DOC 页数:24 大小:1.35MB 下载积分:10 金币
下载 相关 举报
工业窑炉的设计(输送装置)毕业设计论文.doc_第1页
第1页 / 共24页
工业窑炉的设计(输送装置)毕业设计论文.doc_第2页
第2页 / 共24页


点击查看更多>>
资源描述
编号 无锡太湖学院 毕业设计(论文) 相关资料 题目: 工业窑炉的设计(输送装置) 信机 系 机械工程及自动化 专业 学 号:          学生姓名: 指导教师: (职称: 教 授 ) (职称: ) 2013年5月25日 目 录 一、毕业设计(论文)开题报告 二、毕业设计(论文)外文资料翻译及原文 三、学生“毕业论文(论文)计划、进度、检查及落实表” 四、实习鉴定表 无锡太湖学院 毕业设计(论文) 开题报告 题目: 工业窑炉的设计(输送装置) 信机系 机械工程及自动化 专业 学 号: 学生姓名: 指导教师: (职称: 教 授 ) (职称: ) 2012年11月20日 课题来源 本课题来源于导师布置的任务导老师 科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等) 输送装置的设计是机械工程及其自动化专业所包含的一个较为基础的内容,选择输送装置方向的毕业设计题目完全符合本专业的要求,从应用性方面来说,输送装置又是很多机器所必不可少的一个部分。有效保证输送装置的功率及稳定性能够达到设计的要求,具有很好的发展前途和应用前景。 研究内容 1、 选择电动机,计算传动装置的运动和动力参数; 2、 拟定、分析传动装置的运动和动力参数; 3、 进行传动件的设计计算,校核轴、轴承、联轴器、键等; 4、 绘制减速器装配图及典型零件图(图纸数达到3张或以上); 5、 完成设计说明一份,分析明晰,计算正确,阐述清楚。适合的生产加工工 艺 拟采取的研究方法、技术路线、实验方案及可行性分析 首先确定整体设计方案,由公式的演算得到电动机的动力和运动分析,在以此推算相配的传动件,轴系零部件的尺寸规格。综上计算可以得到相关尺寸,再根据力学性能对所得零部件尺寸进行校验从而验证整体方案是否可行。 研究计划及预期成果 研究计划: 2012年11月 布置任务。 2013年1月 对课题研究方向进行学习 2013年2月~3月 拟定方案,提出专机总体方案,供讨论 2013年4月5日~10日 确定方案,专机总体布置 11日~20日 整机设计、部件设计 21日~30日 改进并完成设计 2013年5月1日~10日 撰写设计说明书 11日~15日 总结 预期成果:图纸、设计说明书 特色或创新之处 带式输送机本身便具有价格便宜,标准化程度高特点,使成本大幅降低。高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。 已具备的条件和尚需解决的问题 与指导老师的沟通中,对自己所做课题有了整体的认识,清晰了思路。指导老师提供了论文指导,从而使自己明确了每一步的方向。因第一次绘制复杂的装配图,所以在绘图方面还有待提高。 指导教师意见 同意作为本专业学生毕业设计课题,其难度和工作量均合适。 指导教师签名: 年 月 日 教研室(学科组、研究所)意见 教研室主任签名: 年 月 日 系意见 主管领导签名: 年 月 日 英文原文 Esign of Speed Belt Conveyors G. Lodewijks, The Netherlands. This paper discusses aspects of high-speed belt conveyor design. The capacity of a belt conveyor is determined by the belt speed given a belt width and troughing angle. Belt speed selection however is limited by practical considerations, which are discussed in this paper. The belt speed also affects the performance of the conveyor belt, as for example its energy consumption and the stability of it's running behavior. A method is discussed to evaluate the energy consumption of conveyor belts by using the loss factor of transport. With variation of the belt speed the safety factor requirements vary, which will affect the required belt strength. A new method to account for the effect of the belt speed on the safety factor is presented. Finally, the impact of the belt speed on component selection and on the design of transfer stations is discussed. Belt machine by conveyor belt continuous or intermittent motion to transport all kinds of different things ,Can transport all kinds of bulk materials, but also transport a variety of cardboard boxes, packaging bags, weight of single pieces of small goods, a wide range of uses . Belt conveyor belt material: rubber, silicone, PVC, PU and other materials, in addition to ordinary material conveying, but also to meet the transmission oil resistant, corrosion resistance, antistatic and other special requirements for material. Belt conveyor structure: groove belt machine, flat belt conveyor, climbing belt machine, turning machines and other forms belt, conveyor belt can also be created to enhance the tailgate, skirts and other accessories, can meet a variety of technological requirements.The belt conveyor drive: deceleration motor drive, electric drive roller.Belt conveyor mode: frequency control, stepless transmission.The belt rack material: carbon steel, stainless steel, aluminum profile.Scope of application: light industry, electronics, food, chemical, wood, etc..Belt machine equipment characteristics: belt conveyor is stable, the material and the conveyor belt there is no relative motion, to avoid damage to the carrier material. Low noise, suitable for quiet work environment requirements. Simple structure, easy maintenance. Low energy consumption, low use cost. Conveyor is a common don't have flexible traction component continuous conveying machinery, also called continuous conveyor.It is a material handling equipment, it with handling ability strong, persistent, direction, flexible, and other advantages in industrial production in large being applied. Although many types of belt conveyor, but its working principle is basic similar, most are driving draught device and drive transmission container transport materials. Conveyor can undertake level, the tilt and vertical conveyor, also can make the space transport routes, transmission lines is usually fixed, is a modern production and logistics transport indispensable important mechanical equipment. It has transmission capacity is strong, long distance transportation etc. With the development of industry, conveyor also obtained fast development, conveyor products have been also gradually improved. With the emergence of the power equipment of similar principle is applied, conveyor continuing into the 19th century, britons use basketwork, wire rope for traction belt conveyor. The principle of belt conveyor, when applied in the 17th century also recorded conveyor, in 1880 German company developed driven by steam belt conveyor. Then the British and German and launched inertial conveyor, if the conveyor belt, the application of the principle, creating a tilt of the belt conveyor, belt, traction with chains. All sorts of conveyor during this time arise conveyor, based on human, hydraulic power drive such. All the structures conveyor successively appeared. In 1887 americans produced the screw conveyor, make enterprise internal, between enterprise and inter-city transportation possible. The development history of belt conveyor, they very ancient instead of the original motive for conveyor provide driving force. Ancient people began to use water overturned and high TongChe conveyor, in turn after the water conservancy project's belt conveyor begin in power. Quick-tempered exalts According to the mode of operation conveying machinery can be divided into: 1: belt conveyor 2: screw conveyor 3: dou pattern lift machine The future of large scale, will toward belt use scope, energy consumption, low pollution less, material automatically grading, etc. Past research has shown the economical feasibility of using narrower, faster running conveyor belts versus wider, slower running belts for long overland belt conveyor systems. See for example [I]-[5]. Today, conveyor belts running at speeds around 8 m/s are no exceptions. However, velocities over 10 m/s up to 20 m/s are technically (dynamically) feasible and may also be economically feasible. In this paper belt speeds between the 10 and 20 m/s are classified as high. Belt speeds below the 10 m/s are classified as low. Using high belt speeds should never be a goal in itself. If using high belt speeds is not economically beneficial or if a safe and reliable operation is not ensured at a high belt speed then a lower belt speed should be selected. Selection of the belt speed is part of the total design process. The optimum belt conveyor design is determined by static or steady state design methods. In these methods the belt is assumed to be a rigid, inelastic body. This enables quantification of the steady-state operation of the belt conveyor and determination of the size of conveyor components. The specification of the steady-state operation includes a quantification of the steady-state running belt tensions and power consumption for all material loading and relevant ambient conditions. It should be realized that finding the optimum design is not a one-time effort but an iterative process [6]. Design fine-tuning, determination of the optimum starting and stopping procedures, including determination of the required control algorithms, and determination of the settings and sizes of conveyor components such as drives, brakes and flywheels, are determined by dynamic design methods. In these design methods, also referred to as dynamic analyses, the belt is assumed to be a three-dimensional (visco-) elastic body. A three dimensional wave theory should be used to study time dependent transmission of large local force and displacement disturbances along the belt [7]. In this theory the belt is divided into a series of finite elements. The finite elements incorporate (visco-) elastic springs and masses. The constitutive characteristics of the finite elements must represent the rheological characteristics of the belt. Dynamic analysis produces the belt tension and power consumption during non-stationary operation, like starting and stopping, of the belt conveyor. This paper discusses the design of high belt-speed conveyors, in particular the impact of using high belt speeds on the performance of the conveyor belt in terms of energy consumption and safety factor requirements. Using high belt speeds also requires high reliability of conveyor components such as idlers to achieve an acceptable component life. Another important aspect of high-speed belt conveyor design is the design of efficient feeding and discharge arrangements. These aspects will be discussed briefly. Many methods of analyzing a belt’s physical behavior as a rheological spring have been studied and various techniques have been used. An appropriate model needs to address: 1. Elastic modulus of the belt longitudinal tensile member 2. Resistances to motion which are velocity dependent (i.e. idlers) 3. Viscoelastic losses due to rubber-idler indentation 4. Apparent belt modulus changes due to belt sag between idlers Since the mathematics necessary to solve these dynamic problems are very complex, it is not the goal of this presentation to detail the theoretical basis of dynamic analysis. Rather, the purpose is to stress that as belt lengths increase and as horizontal curves and distributed power becomes more common, the importance of dynamic analysis taking belt elasticity into account is vital to properly develop control algorithms during both stopping and starting. Using the 8.5 km conveyor in Figure 23 as an example, two simulations of starting were performed to compare control algorithms. With a 2x1000 kW drive installed at the head end, a 2x1000 kW drive at a midpoint carry side location and a 1x1000kW drive at the tail, extreme care must be taken to insure proper coordination of all drives is maintained. Figure 27 illustrates a 90 second start with very poor coordination and severe oscillations in torque with corresponding oscillations in velocity and belt tensions. The T1/T2 slip ratio indicates drive slip could occur. Figure 28 shows the corresponding charts from a relatively good 180 second start coordinated to safely and smoothly accelerate the conveyor. Figure 27-120 Sec Poor Start BELTSPEED BELT SPEED SELECTION The lowest overall belt conveyor cost occur in the range of belt widths of 0.6 to 1.0 m [2]. The required conveying capacity can be reached by selection of a belt width in this range and selecting whatever belt speed is required to achieve the required flow rate. Figure 1 shows an example of combinations of belt speed and belt width to achieve Specific conveyor capacities. In this example it is assumed that the bulk density is 850 kg/m3 (coal) and that the trough angle and the surcharge angle are 35' and 20' respectively. Figure 1: Belt width versus belt speed for different capacities. Belt speed selection is however limited by practical considerations. A first aspect is the troughability of the belt. In Figure 1 there is no relation with the required belt strength (rating), which partly depends on the conveyor length and elevation. The combination of belt width and strength must be chosen such that good troughability of the belt is ensured. If the troughability is not sufficient then the belt will not track properly. This will result in unstable running behavior of the belt, in particular at high belt speeds, which is not acceptable. Normally, belt manufacturers expect a sufficiently straight run if approximately 40% of the belt width when running empty, makes contact with the carrying idlers. Approximately 10% should make tangential contact with the center idler roll. A second aspect is the speed of the air relative to the speed of the bulk solid material on the belt (relative airspeed). If the relative airspeed exceeds certain limits then dust will develop. This is in particular a potential problem in mine shafts where a downward airflow is maintained for ventilation purposes. The limit in relative airspeed depends on ambient conditions and bulk material characteristics. A third aspect is the noise generated by the belt conveyor system. Noise levels generally increase with increasing belt speed. In residential areas noise levels are restricted to for example 65 dB. Although noise levels are greatly affected by the design of the conveyor support structure and conveyor covers, this may be a limiting factor in selecting the belt speed. BELT SPEED VARIATION The energy consumption of belt conveyor systems varies with variation of the belt speed, as will be shown in Section 3. The belt velocity can be adjusted with bulk material flow supplied at the loading point to save energy. If the belt is operating at full tonnage then it should run at the high (design) belt speed. The belt speed can be adjusted (decreased) to the actual material (volume) flow supplied at the loading point. This will maintain a constant filling of the belt trough and a constant bulk material load on the belt. A constant filling of the belt trough yields an optimum loading-ratio, and lower energy consumption per unit of conveyed material may be expected. The reduction in energy consumption will be at least 10% for systems where the belt speed is varied compared to systems where the belt speed is kept constant [8]. Varying the belt speed with supplied bulk material flow has the following advantages: Less belt wear at the loading areas Lower noise emission Improved operating behavior as a result of better belt alignment and the avoidance of belt lifting in concave curve by reducing belt tensions Drawbacks include: Investment cost for controllability of the drive and brake systems Variation of discharge parabola with belt speed variation Control system required for controlling individual conveyors in a conveyor system Constant high belt pre-tension Constant high bulk material load on the idler rolls An analysis should be made of the expecte
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服