1、绝密启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷1至2页,第卷3至4页,共150分。第卷考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。2. 第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。第卷用黑色墨水签字笔在答题卡上作答。若在试题卷上作答,答案无效。3. 考试结束,监考员将试题卷、答题卡一并收回。参考公式如果事件互斥,那么
2、 球的表面积公式 如果事件,相互独立,那么
3、 其中表示球的半径 球的体积公式如果事件在一次试验中发生的概率是,那么
4、 次独立重复试验中恰好发生次的概率 其中表示球的半径
5、 一选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在复平面内,复数对应的点位于A第一象限 B第二象限 C第三象限 D第四象限2定义集合运算:设,则集合的所有元素之和为A0 B2 C3 D63若函数的值域是,则函数的值域是A B C &n
6、bsp; D4A B C D不存在5在数列中, ,则 A B C D6函数在区间内的图象是 7已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是A B C D8 展开式中的常数项为 A1 B46
7、 C4245 D42469若,则下列代数式中值最大的是A B C D 10连结球面上两点的线段称为球的弦。半径为4的球的两条弦、的长度分别等于、,、分别为、的中点,每条弦的两端都在球面上运动,有下列四个命题:弦、可能相交于点 弦、可能相交于点的最大值为5 &n
8、bsp; 的最小值为1其中真命题的个数为A1个 B2个 C3个 D4个11电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为A B C D12已知函数,若对于任一实数,与至少有一个为正数,则实数的取值范围是A B &
9、nbsp; C D 绝密启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学第卷注意事项: 第卷2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效。二.填空题:本大题共4小题,每小题4分,共16分。请把答案填在答题卡上13直角坐标平面上三点,若为线段的三等分点,则= 14不等式的解集为 15过抛物线
10、的焦点作倾角为的直线,与抛物线分别交于、两点(在轴左侧),则 16如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有升水时,水面恰好经过正四棱锥的顶点P。如果将容器倒置,水面也恰好过点(图2)。有下列四个命题:A正四棱锥的高等于正四棱柱高的一半B将容器侧面水平放置时,水面也恰好过点C任意摆放该容器,当水面静止时,水面都恰好经过点D若往容器内再注入升水,则容器恰好能装满其中真命题的代号是:
11、 (写出所有真命题的代号)三.解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤17(本小题满分12分)在中,角所对应的边分别为,求及18(本小题满分12分)某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾
12、前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5; 第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。令表示方案实施两年后柑桔产量达到灾前产量的倍数(1)写出的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?19(本小题满分12分)数列为等差数列,为正整数,其前项和为,数列
13、为等比数列,且,数列是公比为64的等比数列,.(1)求;(2)求证.20(本小题满分12分)如图,正三棱锥的三条侧棱、两两垂直,且长度均为2、分别是、的中点,是的中点,过作平面与侧棱、或其延长线分别相交于、,已知(1)求证:平面;(2)求二面角的大小;21(本小题满分12分)设点在直线上,过点作双曲线的两条切线,切点为,定点.(1)求证:三点共线。(2)过点作直线的垂线,垂足为,试求的重心所在曲线方程.22(本小题满分14分)已知函数,当时,求的单调区间;对任意正数,证明:绝密启用前 秘密启用后2008年普通高等学校招生全国统一考试(江西卷)理科数学参考答案 一. 选
14、择题:本大题共12小题,每小题5分,共60分。题号123456789101112答案DDBAADCDACCB1.因所以对应的点在第四象限,2.因,3.令,则,4.5. . ,6D. 函数7 .由题知,垂足的轨迹为以焦距为直径的圆,则又,所以8. 常数项为9. A. 10. 解:正确,错误。易求得、到球心的距离分别为3、2,若两弦交于,则,中,有,矛盾。当、共线时分别取最大值5最小值1。11. . 一天显示的时间总共有种,和为23总共有4种,故所求概率为.12. 解:当时,显然不成立当时,因当即时结论显然成立;当时只要即可即则二. 填空题:本大题共4小题,每小题4分,共16分。13.
15、 14. 15. 16. B、D13. 由已知得,则1415. 16 解:真命题的代号是: BD 。易知所盛水的容积为容器容量的一半,故D正确,于是A错误;水平放置时由容器形状的对称性知水面经过点P,故B正确;C的错误可由图1中容器位置向右边倾斜一些可推知点P将露出水面。三. 解答题:本大题共6小题,共74分。17.解:由得 ,又由得 即 由正弦定理得18.解:(1)的所有取值为的所有取值为
16、,、的分布列分别为:0.80.91.01.1251.25P0.20.150.350.150.150.80.961.01.21.44P0.30.20.180.240.08(2)令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,,可见,方案二两年后柑桔产量超过灾前产量的概率更大(3)令表示方案所带来的效益,则101520P0.350.350.3101520P0.50.180.32所以可见,方案一所带来的平均效益更大。19解:(1)设的公差为,的公比为,则为正整数,依题意有由知为正有理数,故为的因子之一,解得故(2)20解 :(1)证明:依题设,是的中位线,所以,则平面,所以。又是的
17、中点,所以,则。因为,所以面,则,因此面。(2)作于,连。因为平面,根据三垂线定理知,就是二面角的平面角。作于,则,则是的中点,则。设,由得,解得,在中,则,。所以,故二面角为。解法二:(1)以直线分别为轴,建立空间直角坐标系,则所以所以所以平面由得,故:平面(2)由已知设则由与共线得:存在有得 同理:设是平面的一个法向量,则令得 又是平面的一个法量所以二面角的大小为(3)由(2)知,平面的一个法向量为。则。则点到平面的距离为21证明:(1)设,由已知得到,且,设切线的方程为:由得从而,解得因此的方程为:同理的方程为:又在上,所以,即点都在直线上又也在直线上,所以三点共线(2)垂线
18、的方程为:,由得垂足,设重心所以 解得由 可得即为重心所在曲线方程22解:、当时,求得 ,于是当时,;而当 时,即在中单调递增,而在中单调递减 (2).对任意给定的,由 ,若令 ,则 ,而 (一)、先证;因为,又由 ,得 所以(二)、再证;由、式中关于的对称性,不妨设则()、当,则,所以,因为 ,此时 ()、当 ,由得 ,,因为 所以 同理得 ,于是 今证明 , 因为 ,只要证 ,即 ,也即 ,据,此为显然 因此得证故由得 综上所述,对任何正数,皆有13 / 13