收藏 分销(赏)

基于半导体性单壁碳纳米管_富勒烯异质结的高性能透明全碳光电探测器.pdf

上传人:自信****多点 文档编号:2103264 上传时间:2024-05-16 格式:PDF 页数:15 大小:4.27MB
下载 相关 举报
基于半导体性单壁碳纳米管_富勒烯异质结的高性能透明全碳光电探测器.pdf_第1页
第1页 / 共15页
基于半导体性单壁碳纳米管_富勒烯异质结的高性能透明全碳光电探测器.pdf_第2页
第2页 / 共15页
基于半导体性单壁碳纳米管_富勒烯异质结的高性能透明全碳光电探测器.pdf_第3页
第3页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、文章编号2097-1842(2023)05-1243-14High-performance transparent all-carbon photodetectors basedon the semiconducting single-walled carbonnanotube/fullerene heterojunctionsZHANGLuo-xi,YINHuan,CHENYue,ZHUMing-kui,SUYan-jie*(Key Laboratory of Film and Microfabrication(Ministry of Education),School of Electro

2、nics,Information andElectrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)*Corresponding author,E-mail:Abstract:Takingadvantageofthehighabsorptioncoefficient,excellentphotoelectricproperties,andhighcarriermobilityofSingle-WalledCarbonNanoTubes(SWCNTs),high-performance,transparen

3、t,all-carbonField-EffectTransistor(FET)photodetectorhasbeenconstructedwithahightransmittancemorethan80%inthevisiblelightband,inwhichsemiconductingSWCNT(sc-SWCNT)/fullerene(C60)heterojunctionsasthechannelmaterials,patternedmetallicSWCNTfilmassource/drainelectrodes,grapheneoxide(GO)asthedielectriclaye

4、r,andIndiumTinOxide(ITO)asatransparentgateelectrode.Theelectricaltestresultsshowthatthephotodetectorexhibitsastronggate-tunablecharacteristics,andachievesabroadbandspectralre-sponsefrom405to1064nminthevisible-nearinfraredspectralregion.Under940nmilluminationwithalightdensityof5mW/cm2,themaximumphoto

5、electricresponsivityof18.55A/Wandaspecificdetectivityof5.351011Jonescanbeachieved.Key words:single-walledcarbonnanotubes;Fullerene;all-carbonheterojunctions;hightransparency;field-effecttransistorphotodetector基于半导体性单壁碳纳米管/富勒烯异质结的高性能透明全碳光电探测器张罗茜,尹欢,陈越,朱明奎,苏言杰*(上海交通大学电子信息与电气工程学院薄膜与微细技术教育部重点实验室,上海 2002

6、40)摘要:利用半导体性单壁碳纳米管(SWCNT)的高吸收系数、优异的光电特性和高载流子迁移率等特点,本文构筑了基于半导体 SWCNT(sc-SWCNT)/富勒烯(C60)异质结的透明全碳宽光谱的场效应晶体管光电探测器。该器件的大部分结构均由碳基材料组成,全碳异质结作为导电沟道材料,金属性 SWCNT 作为源漏电极,氧化石墨烯(GO)作为介质层,在可见光波段的透光率均高于 80%。电学测试结果表明:该光电探测器表现出了较强的栅控能力,实现了从 405收稿日期:2022-11-24;修订日期:2022-12-12基金项目:国家自然科学基金(No.61974089)SupportedbytheNa

7、tionalNaturalScienceFoundationofChina(No.61974089)第16卷第5期中国光学(中英文)Vol.16No.52023 年 9 月ChineseOpticsSept.20231064nm 的可见光-近红外宽光谱响应,在 5mW/cm2的 940nm 激光照射下,该器件光电响应率可以达到 18.55A/W,比探测率达到 5.351011Jones,同时,表现出了优异的循环稳定性。关 键 词:单壁碳纳米管;富勒烯;全碳异质结;高透明度;场效应晶体管光电探测器中图分类号:TN15文献标志码:Adoi:10.37188/CO.2022-02431Introdu

8、ctionDuetotherapiddevelopmentofsemiconduct-ortechnologyandinformationscience,theresearchonphotosensitivedeviceshasreceivedextensiveat-tention.Photosensitivedevicesplayacrucialcoreroleinmodernopticaldetection,opticalcommunic-ation,optical information processing,and opticalcontroltechnologies in indus

9、trial technology,na-tionaldefense,military,andcivilianfields.Asthescale and diversity of applications are increasing,thedemandforlightdetectiondeviceswithhigherspeed,high conversion efficiency or wide wave-lengthrange,flexibility,andtransparencyisbecom-ingmoreprominent.Moreover,thereareincreasingreq

10、uirements for the operational performance ofphotodetectors,suchashighsensitivityandrespons-ivityaswellasfastresponsespeed,lownoiseandlowpowerconsumptionofthedevicesintheoperat-ing wavelength band1.Kobe University2 has de-veloped an infrared sensor with high responsivityat RT,and the central part of

11、the device is anAl0.3Ga0.7As/GaAs heterostructure.The maximumphotoelectricresponsivityof0.8A/Wandaspecif-icdetectivityof1.81010Jonesareachievedatabout6.6matabiasof1V.Althoughconventionalsilic-on-basedphotodetectorshavetheadvantagesofma-turepreparationprocessandlowcost,thewidebandgapofsiliconmaterial

12、s(1.12eV)limitstherangein working wavelength3.In addition,the energyband structure of the indirect band gap of siliconmaterial makes it impossible to achieve high-effi-ciency photoelectric conversion,especially in thefieldoftransparentoptoelectronics.Inthisfield,thelightabsorptioncapacityofmaterials

13、suchassilic-on,germanium,indium gallium arsenic and othermaterialswith high transparency is drastically re-duced,makingitdifficulttoachievetheperfectin-tegrationof high transparency and high optoelec-tronic performance.At present,most photoactivematerialsusedinphotodetectorsareinorganic,andthemanufa

14、cturing process of these materials re-quireshightemperatureandhighenergyconsump-tion,and the growth process needs to use manycomplex methods.These methods are complex,sensitivetoprocessfluctuations,andhavehightech-nical requirements.In addition,the processes andphotoactive materials themselves typic

15、ally containharmfulelementssuchaslead,mercury,cadmiumand arsenic.Therefore,the development of NIRphotodetectorsbasedonnewmaterialshasgradu-allybecomearesearchfocusinrecentyears.Sincethe1960s,theemergingfieldoforganicelectronicshasmadetremendousprogressincatch-ingupwithinorganicsemiconductortechnolog

16、yandnowoffersalternativesformanyoptoelectronicap-plications.Thedevelopmentofinorganicmaterialsiscurrentlydominatedbyinorganicsemiconductorsormetals,suchastransparentelectrodes,thin-filmtransistors,solarcells,andphotodetectors.Amongthem,low-dimensionalnanoscalematerialshaveat-tractedmuch attention fo

17、r their potential applica-tionsinnewprintable,highlyintegratedflexibleandself-powered photochemical UV-NIR broad-spec-trumphotodetectors.Inrecentyears,allotropestructuresofcarbonsuch as fullerenes(C60),carbon nanotubes,andgraphenehaveattractedagreatdealofresearchin-terestandexperimentalapplicationsd

18、uetotheirsu-periorchemical,physical,mechanical,andelectron-icproperties.Dependingonthechemicalproperties,some of these carbon materials are metallic andsome are semiconducting and can form insulatingoxides.Therefore,theuseofthesematerialsincom-bination to fabricate new optoelectronic devices1244中国光学

19、(中英文)第16卷composedentirelyofcarbon-basedmaterialsofferssomeattractivepossibilitiesforthedevelopmentofnext-generation electronic devices.Carbon-basedmaterialsareveryabundantonEarth3-4andcanbedispersedanddepositedusingsolutionprocesses,sothey can be used directly in well-developed toolsandprocesses5,an

20、dtheseadvantageslaythefound-ationforthedevelopmentofcarbonnanomaterialsforresearchandapplications.Duetotheirexcellentelectricalconductivity,hightransparencyandhighrobustness,carbonnanomaterialshavereceivedhighattention,especially Single-Walled Carbon NanoTubes(SWCNTs).As a typical quasi one-dimen-si

21、onalnanomaterial,SWCNTshavespecialelectric-alandopticalproperties6-7andhavebeenextens-ivelyinvestigatedinvariousapplicationfields,suchastransistorsandsolarcells8-9.Accordingtotheirdiametersandchirality,SWCNTsexhibitsemicon-ductingormetalliccharacteristics10.Thebandgapsof semiconducting SWCNTs(sc-SWC

22、NTs)withdifferentdiametersvaryfrom0.5to1.2eV.Duetotheirultra-highcarriermobility(105cm2/Vs),highabsorptioncoefficients(104105/cm),andlongex-citondiffusionlength,sc-SWCNTsarecommonlyusedasactivematerialsforhigh-performancecar-bon-basedphotodetectors11-12.Inaddition,theelec-trontransitionofsc-SWCNTsis

23、sensitivetopolar-izedlightduetotheirspecificangularmomentuminitssubbandgap,thusfurtherexpandingthedetec-tionapplicationsofsc-SWCNTs-basedphotodetect-ors13-14.Duetotheaboveuniqueproperties,sc-SW-CNTshavebecomeanidealmaterialforlighten-ergycollectioninbroadbandlightdetection.Therehavebeennumerousrepor

24、tsonthere-search and applications of various photosensitivedevices based on sc-SWCNTs.Researchers fromPekingUniversity15havedevelopedanasymmetricstructurebased SWCNT photovoltaic type IR de-tectorwitharesponsivityof9.87105A/Wandadetectivityof107Jones.ThistypeofIRdetectorhastheadvantagesofsimpleproce

25、ssandnocoolingIRdetection at RT.L Pengs team16 also reported ahigh-performancephotodiodebasedoncarbonnan-otubestreatedbyadopant-freetechniquesolution,whichcanoperateatRTandzerobias.Thebroad-band response range of the detector is 785 2100 nm,and the detectivity exceeds 1011 Jones.However,thephotogene

26、ratedelectron/holepairsinsc-SWCNTsusuallyremainintheexcitonstate,andtheseparationofexcitonsusuallyrequiresastrongelectricfieldoraninternalelectricfieldtogeneratephotocurrentsintheexternalcircuit.Therefore,thedissociationandtransferofexcitonsneedtobeen-hancedbycombiningwithothermaterialssuchasbulksem

27、iconductors,nanomaterials,andpolymersto form heterojunctions17-19.Due to its sphericalstructure,C60 hasa high electron affinity and re-quires less recombination energy during electrontransfer.Therefore,C60tendstoaccelerateforwardelectron transfer and slow down reverse electrontransfer,resulting in l

28、ong-lived charge-separatedstates20-22.In various optoelectronic applications,C60iscommonlyusedasanefficienttrappingmater-ial for photogenerated electrons,which generateshigher photocurrents by trapping light-generatedcarriers and enabling longer carrier recombinationlifetimes23-24.Inaddition,theall-

29、carbonheterojunc-tionconstructedfromsc-SWCNTsandC60canalsoavoidinterfacialatomiclayerdiffusiontoacertainextent,whichismorefavorableforthedissociationof photogenerated electron-hole pairs18.A novelphotodetector based on graphene nanoribbons-C60heterostructuresispreparedbyProf.WangsgroupatNanyangTechn

30、ologicalUniversity,Singapore.Itcan achieve a high photoresponsivity of 0.4A/Wundermid-infraredlaserirradiationatroomtemper-ature,whichenhancedthephotoresponsivityofthetransistorbyaboutanorderofmagnitudeoverthatof pure graphene21.This high performance isachievedbythehighelectroncaptureefficiencyofthe

31、C60filmdepositedonthegraphenenanoribbon.Suchcarbonmaterialheterojunctionphotodetectorspave the way for the realization of flexible andbroadband photodetectors for various applications第5期ZHANGLuo-xi,et al.:High-performancetransparentall-carbonphotodetectors.1245suchasimaging,remotesensing,andinfrared

32、cam-erasensors.Ontheotherhand,field-effecttransist-ors usually use gold as the electrode material,however,theuseofgoldwilldecreaseopticaltrans-parency,whiletheuseofmetal-freedevicessuchasSWCNTcannotonlyachieveopticaltransparencyandmechanical robustness,carbon-based conduct-ivematerialalsohaveadvanta

33、gesoverothermetalcontactsinelectricalcontactcarbonnanostructures.Therefore,thispaperconstructsatransparent,all-carbon field-effect transistor-type photodetectorbasedonsc-SWCNT/C60heterojunctions,metallicSWCNTsassource-drainelectrodes,grapheneox-ide(GO)asthedielectriclayer,andindiumtinox-ide(ITO)asth

34、etransparentgate.Thehightransmit-tanceofthedevicewasdemonstratedbycharacter-izingthelighttransmissionofthesamplebyUV-Vis-NIR spectrophotometer.The modified sc-SW-CNTmaterialischaracterizedandanalyzedbyscan-ningelectronmicroscopyandRamanspectroscopyfor microscopic morphology and charge transferlevel,

35、andtheresultsshowthatC60playedap-typedoping role for sc-SWCNT.The electrical testsdemonstrate that the device has a more sensitivephotoelectricresponsetovisible-near-infraredlightinthe4051064nmband,expandingtheapplica-tionofthephotodetectorinnext-generationtrans-parenttechnologiessuchassmartwindowsa

36、ndarti-ficialintelligenceglasses.2Experiment2.1Preparationofsc-SWCNT/C60all-carbonde-vicesFirst,the(6,5)SWCNT dispersion was pre-pared.0.5mgof(6,5)SWCNTpowder(Sigma-Ald-rich)was weighed and dispersed into 10mL ofaqueous sodium dodecyl sulfate(SDS)solution(0.01g/mL).After2hofultrasonictreatmentinanic

37、ebath,theinadequatelydispersed(6,5)SWCNTpowderwasremovedbycentrifugationat14000rpmfor30min,andthesupernatantaftercentrifugationwasdiluted5timestoobtainahomogeneous(6,5)SWCNTdispersion.Then,GOfilmswerepreparedby vacuum extraction and filtration method andusedasthedielectriclayerofthetransistors.After

38、dilutingtheGOaqueoussolutionandsonicatingatlow temperature for 1h,10mL of the dispersionwasgraduallyaddedtoavacuumfiltrationdevicecontaining a 0.22m cellulose membrane andfilteredtoformahomogeneousGOfilm.Afterfil-teringtheaqueoussolution,excessdeionizedwaterwas added to clean the excess SDS in the f

39、ilm3timestoreduceitseffectonthefilmperformance.Finally,theGOfilmsonthecellulosemembranesweredriedinavacuumovenat40Cfor2h.TheaqueousgrapheneoxidesolutionwasreplacedwithahomogeneousdispersionofmetallicSWCNTindeionized water(0.05mg/mL).Vacuum filtrationwasperformedinthesamewayasdescribedabovetoobtainun

40、iformanddenseconductivesc-SWCNTfilmsasabackupmaterialforthesource-drainelec-trode.ITO conductive glass with a thickness of135nmwasusedasthesubstrateandthegateelec-trode.First,theITOconductiveglasswascleanedwithdeionizedwater,acetone,isopropanolandeth-anolinordertoremoveoilfromthesubstratesur-face.Th

41、en,theGOfilmonthepreparedcellulosefilmwastransferredtotheITOsubstrate,andtheGOfilmwaslaminatedandspreadontheconduct-iveglasssurfaceusingethanolandwater,andthenthecellulosefilmwasdissolvedinacetonebysoak-inginacetone,andwashedrepeatedlywithacetonetoprevent the residual cellulose film on the sub-strat

42、efromaffectingthedeviceperformance.Then,theabovepreparedsc-SWCNTdispersionwasde-positedontheGOsurfacebyspincoatingmethodat2000rpmtoformauniformfilm,and2mgofC60wasweighedbyvacuumthermalevaporationmeth-odtomakeuniformvaporizationontothesurfaceofthecarbontubefilm.Theheterojunctionof(6,5)SWCNT/C60onthes

43、ubstratewasconstructedbyan-nealingat60Cfor1hundervacuum.Finally,the1246中国光学(中英文)第16卷metallicSWCNTfilmobtainedbysuctionfiltrationwas transferred to the sc-SWCNT/C60 heterojunc-tionbyrepeatingtheabovestepstoformasource-drain pattern.The channel width between thesource-drainelectrodesis200mandthelength

44、is400m.2.2TestingandcharacterizationIn this paper,the surface morphology of sc-SWCNTfilms/C60heterojunctionsaswellasmetal-lic SWCNT was characterized using a scanningelectronmicroscope(SEM,ZeissUltraPlus,Ger-many).Thetransmissionspectrawereobtainedbycharacterizing the transmittance of the samples to

45、lightusingaLambda950modelUV-Vis-NIRspec-trophotometer(USA).TheRamanpeakshiftsoftheheterojunctionwere analyzed by Raman spectro-scopy statistics at an excitation wavelength of514nm.Theoptoelectronicpropertiesofthedeviceswereevaluatedatroomtemperatureusingasemi-conductor parameter analyzer,and the cur

46、rent-voltage(I-V)curvesandcurrent-time(I-T)curvesofthedevicesweremeasuredundertheirradiationofvarious monochromatic laser diodes with ad-justable power as the signal source of the opticalpulses(laserwavelengthsincluding405,532,650,780,860,940and1064nm).3ResultsanddiscussionThestructurediagramoftheco

47、nstructedfield-effecttransistorisshowninFigure1(a),whereITOandGOformthegateanddielectriclayer,sc-SW-CNT/C60 heterojunction serves as the conductivechannel,and metallic SWCNT forms the source-drainelectrode.Figure1(b)showstheopticaltrans-missionspectrumwithinthevisiblelightrangeofthechannel(sc-SWCNT/

48、C60film)region.Theinsetshowsthephysicalimageofthepreparedfield-ef-fecttransistordevice.Itisobviousthatalmostallcarbonmaterial films deposited on ITO are com-pletelytransparent,andtheirtransmittanceisonly10%lowerthanthatofthesubstrate.When80%ofthesubstrateiscoveredwithsc-SWCNTfilm(form-ingchannels an

49、d electrodes),the optical transmit-tanceofthedeviceremainsabove80%,indicatingthatthedesignofthedevicedoesnotaffectthelightabsorption of the channel layer itself.Figure 2(a)shows the carbon nanotubes deposited on GO byspincoating,sc-SWCNTisevenlydistributedthrou-ghouttheentireregion,andnoobvioussurfa

50、cedis-persantsorotherpolymersarevisibleintheimage,demonstratingthe high dispersibility of the nan-otubes.Thecarbontubesolutiondispersedandcent-rifuged by ultrasound ensures the uniformity anddensityofthesc-SWCNTsfilm.Figure2(b)showsthe SEM image of the sc-SWCNT/C60 compositefilm,from which it can be

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服