ImageVerifierCode 换一换
格式:PDF , 页数:15 ,大小:4.27MB ,
资源ID:2103264      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2103264.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于半导体性单壁碳纳米管_富勒烯异质结的高性能透明全碳光电探测器.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于半导体性单壁碳纳米管_富勒烯异质结的高性能透明全碳光电探测器.pdf

1、文章编号2097-1842(2023)05-1243-14High-performance transparent all-carbon photodetectors basedon the semiconducting single-walled carbonnanotube/fullerene heterojunctionsZHANGLuo-xi,YINHuan,CHENYue,ZHUMing-kui,SUYan-jie*(Key Laboratory of Film and Microfabrication(Ministry of Education),School of Electro

2、nics,Information andElectrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)*Corresponding author,E-mail:Abstract:Takingadvantageofthehighabsorptioncoefficient,excellentphotoelectricproperties,andhighcarriermobilityofSingle-WalledCarbonNanoTubes(SWCNTs),high-performance,transparen

3、t,all-carbonField-EffectTransistor(FET)photodetectorhasbeenconstructedwithahightransmittancemorethan80%inthevisiblelightband,inwhichsemiconductingSWCNT(sc-SWCNT)/fullerene(C60)heterojunctionsasthechannelmaterials,patternedmetallicSWCNTfilmassource/drainelectrodes,grapheneoxide(GO)asthedielectriclaye

4、r,andIndiumTinOxide(ITO)asatransparentgateelectrode.Theelectricaltestresultsshowthatthephotodetectorexhibitsastronggate-tunablecharacteristics,andachievesabroadbandspectralre-sponsefrom405to1064nminthevisible-nearinfraredspectralregion.Under940nmilluminationwithalightdensityof5mW/cm2,themaximumphoto

5、electricresponsivityof18.55A/Wandaspecificdetectivityof5.351011Jonescanbeachieved.Key words:single-walledcarbonnanotubes;Fullerene;all-carbonheterojunctions;hightransparency;field-effecttransistorphotodetector基于半导体性单壁碳纳米管/富勒烯异质结的高性能透明全碳光电探测器张罗茜,尹欢,陈越,朱明奎,苏言杰*(上海交通大学电子信息与电气工程学院薄膜与微细技术教育部重点实验室,上海 2002

6、40)摘要:利用半导体性单壁碳纳米管(SWCNT)的高吸收系数、优异的光电特性和高载流子迁移率等特点,本文构筑了基于半导体 SWCNT(sc-SWCNT)/富勒烯(C60)异质结的透明全碳宽光谱的场效应晶体管光电探测器。该器件的大部分结构均由碳基材料组成,全碳异质结作为导电沟道材料,金属性 SWCNT 作为源漏电极,氧化石墨烯(GO)作为介质层,在可见光波段的透光率均高于 80%。电学测试结果表明:该光电探测器表现出了较强的栅控能力,实现了从 405收稿日期:2022-11-24;修订日期:2022-12-12基金项目:国家自然科学基金(No.61974089)SupportedbytheNa

7、tionalNaturalScienceFoundationofChina(No.61974089)第16卷第5期中国光学(中英文)Vol.16No.52023 年 9 月ChineseOpticsSept.20231064nm 的可见光-近红外宽光谱响应,在 5mW/cm2的 940nm 激光照射下,该器件光电响应率可以达到 18.55A/W,比探测率达到 5.351011Jones,同时,表现出了优异的循环稳定性。关 键 词:单壁碳纳米管;富勒烯;全碳异质结;高透明度;场效应晶体管光电探测器中图分类号:TN15文献标志码:Adoi:10.37188/CO.2022-02431Introdu

8、ctionDuetotherapiddevelopmentofsemiconduct-ortechnologyandinformationscience,theresearchonphotosensitivedeviceshasreceivedextensiveat-tention.Photosensitivedevicesplayacrucialcoreroleinmodernopticaldetection,opticalcommunic-ation,optical information processing,and opticalcontroltechnologies in indus

9、trial technology,na-tionaldefense,military,andcivilianfields.Asthescale and diversity of applications are increasing,thedemandforlightdetectiondeviceswithhigherspeed,high conversion efficiency or wide wave-lengthrange,flexibility,andtransparencyisbecom-ingmoreprominent.Moreover,thereareincreasingreq

10、uirements for the operational performance ofphotodetectors,suchashighsensitivityandrespons-ivityaswellasfastresponsespeed,lownoiseandlowpowerconsumptionofthedevicesintheoperat-ing wavelength band1.Kobe University2 has de-veloped an infrared sensor with high responsivityat RT,and the central part of

11、the device is anAl0.3Ga0.7As/GaAs heterostructure.The maximumphotoelectricresponsivityof0.8A/Wandaspecif-icdetectivityof1.81010Jonesareachievedatabout6.6matabiasof1V.Althoughconventionalsilic-on-basedphotodetectorshavetheadvantagesofma-turepreparationprocessandlowcost,thewidebandgapofsiliconmaterial

12、s(1.12eV)limitstherangein working wavelength3.In addition,the energyband structure of the indirect band gap of siliconmaterial makes it impossible to achieve high-effi-ciency photoelectric conversion,especially in thefieldoftransparentoptoelectronics.Inthisfield,thelightabsorptioncapacityofmaterials

13、suchassilic-on,germanium,indium gallium arsenic and othermaterialswith high transparency is drastically re-duced,makingitdifficulttoachievetheperfectin-tegrationof high transparency and high optoelec-tronic performance.At present,most photoactivematerialsusedinphotodetectorsareinorganic,andthemanufa

14、cturing process of these materials re-quireshightemperatureandhighenergyconsump-tion,and the growth process needs to use manycomplex methods.These methods are complex,sensitivetoprocessfluctuations,andhavehightech-nical requirements.In addition,the processes andphotoactive materials themselves typic

15、ally containharmfulelementssuchaslead,mercury,cadmiumand arsenic.Therefore,the development of NIRphotodetectorsbasedonnewmaterialshasgradu-allybecomearesearchfocusinrecentyears.Sincethe1960s,theemergingfieldoforganicelectronicshasmadetremendousprogressincatch-ingupwithinorganicsemiconductortechnolog

16、yandnowoffersalternativesformanyoptoelectronicap-plications.Thedevelopmentofinorganicmaterialsiscurrentlydominatedbyinorganicsemiconductorsormetals,suchastransparentelectrodes,thin-filmtransistors,solarcells,andphotodetectors.Amongthem,low-dimensionalnanoscalematerialshaveat-tractedmuch attention fo

17、r their potential applica-tionsinnewprintable,highlyintegratedflexibleandself-powered photochemical UV-NIR broad-spec-trumphotodetectors.Inrecentyears,allotropestructuresofcarbonsuch as fullerenes(C60),carbon nanotubes,andgraphenehaveattractedagreatdealofresearchin-terestandexperimentalapplicationsd

18、uetotheirsu-periorchemical,physical,mechanical,andelectron-icproperties.Dependingonthechemicalproperties,some of these carbon materials are metallic andsome are semiconducting and can form insulatingoxides.Therefore,theuseofthesematerialsincom-bination to fabricate new optoelectronic devices1244中国光学

19、(中英文)第16卷composedentirelyofcarbon-basedmaterialsofferssomeattractivepossibilitiesforthedevelopmentofnext-generation electronic devices.Carbon-basedmaterialsareveryabundantonEarth3-4andcanbedispersedanddepositedusingsolutionprocesses,sothey can be used directly in well-developed toolsandprocesses5,an

20、dtheseadvantageslaythefound-ationforthedevelopmentofcarbonnanomaterialsforresearchandapplications.Duetotheirexcellentelectricalconductivity,hightransparencyandhighrobustness,carbonnanomaterialshavereceivedhighattention,especially Single-Walled Carbon NanoTubes(SWCNTs).As a typical quasi one-dimen-si

21、onalnanomaterial,SWCNTshavespecialelectric-alandopticalproperties6-7andhavebeenextens-ivelyinvestigatedinvariousapplicationfields,suchastransistorsandsolarcells8-9.Accordingtotheirdiametersandchirality,SWCNTsexhibitsemicon-ductingormetalliccharacteristics10.Thebandgapsof semiconducting SWCNTs(sc-SWC

22、NTs)withdifferentdiametersvaryfrom0.5to1.2eV.Duetotheirultra-highcarriermobility(105cm2/Vs),highabsorptioncoefficients(104105/cm),andlongex-citondiffusionlength,sc-SWCNTsarecommonlyusedasactivematerialsforhigh-performancecar-bon-basedphotodetectors11-12.Inaddition,theelec-trontransitionofsc-SWCNTsis

23、sensitivetopolar-izedlightduetotheirspecificangularmomentuminitssubbandgap,thusfurtherexpandingthedetec-tionapplicationsofsc-SWCNTs-basedphotodetect-ors13-14.Duetotheaboveuniqueproperties,sc-SW-CNTshavebecomeanidealmaterialforlighten-ergycollectioninbroadbandlightdetection.Therehavebeennumerousrepor

24、tsonthere-search and applications of various photosensitivedevices based on sc-SWCNTs.Researchers fromPekingUniversity15havedevelopedanasymmetricstructurebased SWCNT photovoltaic type IR de-tectorwitharesponsivityof9.87105A/Wandadetectivityof107Jones.ThistypeofIRdetectorhastheadvantagesofsimpleproce

25、ssandnocoolingIRdetection at RT.L Pengs team16 also reported ahigh-performancephotodiodebasedoncarbonnan-otubestreatedbyadopant-freetechniquesolution,whichcanoperateatRTandzerobias.Thebroad-band response range of the detector is 785 2100 nm,and the detectivity exceeds 1011 Jones.However,thephotogene

26、ratedelectron/holepairsinsc-SWCNTsusuallyremainintheexcitonstate,andtheseparationofexcitonsusuallyrequiresastrongelectricfieldoraninternalelectricfieldtogeneratephotocurrentsintheexternalcircuit.Therefore,thedissociationandtransferofexcitonsneedtobeen-hancedbycombiningwithothermaterialssuchasbulksem

27、iconductors,nanomaterials,andpolymersto form heterojunctions17-19.Due to its sphericalstructure,C60 hasa high electron affinity and re-quires less recombination energy during electrontransfer.Therefore,C60tendstoaccelerateforwardelectron transfer and slow down reverse electrontransfer,resulting in l

28、ong-lived charge-separatedstates20-22.In various optoelectronic applications,C60iscommonlyusedasanefficienttrappingmater-ial for photogenerated electrons,which generateshigher photocurrents by trapping light-generatedcarriers and enabling longer carrier recombinationlifetimes23-24.Inaddition,theall-

29、carbonheterojunc-tionconstructedfromsc-SWCNTsandC60canalsoavoidinterfacialatomiclayerdiffusiontoacertainextent,whichismorefavorableforthedissociationof photogenerated electron-hole pairs18.A novelphotodetector based on graphene nanoribbons-C60heterostructuresispreparedbyProf.WangsgroupatNanyangTechn

30、ologicalUniversity,Singapore.Itcan achieve a high photoresponsivity of 0.4A/Wundermid-infraredlaserirradiationatroomtemper-ature,whichenhancedthephotoresponsivityofthetransistorbyaboutanorderofmagnitudeoverthatof pure graphene21.This high performance isachievedbythehighelectroncaptureefficiencyofthe

31、C60filmdepositedonthegraphenenanoribbon.Suchcarbonmaterialheterojunctionphotodetectorspave the way for the realization of flexible andbroadband photodetectors for various applications第5期ZHANGLuo-xi,et al.:High-performancetransparentall-carbonphotodetectors.1245suchasimaging,remotesensing,andinfrared

32、cam-erasensors.Ontheotherhand,field-effecttransist-ors usually use gold as the electrode material,however,theuseofgoldwilldecreaseopticaltrans-parency,whiletheuseofmetal-freedevicessuchasSWCNTcannotonlyachieveopticaltransparencyandmechanical robustness,carbon-based conduct-ivematerialalsohaveadvanta

33、gesoverothermetalcontactsinelectricalcontactcarbonnanostructures.Therefore,thispaperconstructsatransparent,all-carbon field-effect transistor-type photodetectorbasedonsc-SWCNT/C60heterojunctions,metallicSWCNTsassource-drainelectrodes,grapheneox-ide(GO)asthedielectriclayer,andindiumtinox-ide(ITO)asth

34、etransparentgate.Thehightransmit-tanceofthedevicewasdemonstratedbycharacter-izingthelighttransmissionofthesamplebyUV-Vis-NIR spectrophotometer.The modified sc-SW-CNTmaterialischaracterizedandanalyzedbyscan-ningelectronmicroscopyandRamanspectroscopyfor microscopic morphology and charge transferlevel,

35、andtheresultsshowthatC60playedap-typedoping role for sc-SWCNT.The electrical testsdemonstrate that the device has a more sensitivephotoelectricresponsetovisible-near-infraredlightinthe4051064nmband,expandingtheapplica-tionofthephotodetectorinnext-generationtrans-parenttechnologiessuchassmartwindowsa

36、ndarti-ficialintelligenceglasses.2Experiment2.1Preparationofsc-SWCNT/C60all-carbonde-vicesFirst,the(6,5)SWCNT dispersion was pre-pared.0.5mgof(6,5)SWCNTpowder(Sigma-Ald-rich)was weighed and dispersed into 10mL ofaqueous sodium dodecyl sulfate(SDS)solution(0.01g/mL).After2hofultrasonictreatmentinanic

37、ebath,theinadequatelydispersed(6,5)SWCNTpowderwasremovedbycentrifugationat14000rpmfor30min,andthesupernatantaftercentrifugationwasdiluted5timestoobtainahomogeneous(6,5)SWCNTdispersion.Then,GOfilmswerepreparedby vacuum extraction and filtration method andusedasthedielectriclayerofthetransistors.After

38、dilutingtheGOaqueoussolutionandsonicatingatlow temperature for 1h,10mL of the dispersionwasgraduallyaddedtoavacuumfiltrationdevicecontaining a 0.22m cellulose membrane andfilteredtoformahomogeneousGOfilm.Afterfil-teringtheaqueoussolution,excessdeionizedwaterwas added to clean the excess SDS in the f

39、ilm3timestoreduceitseffectonthefilmperformance.Finally,theGOfilmsonthecellulosemembranesweredriedinavacuumovenat40Cfor2h.TheaqueousgrapheneoxidesolutionwasreplacedwithahomogeneousdispersionofmetallicSWCNTindeionized water(0.05mg/mL).Vacuum filtrationwasperformedinthesamewayasdescribedabovetoobtainun

40、iformanddenseconductivesc-SWCNTfilmsasabackupmaterialforthesource-drainelec-trode.ITO conductive glass with a thickness of135nmwasusedasthesubstrateandthegateelec-trode.First,theITOconductiveglasswascleanedwithdeionizedwater,acetone,isopropanolandeth-anolinordertoremoveoilfromthesubstratesur-face.Th

41、en,theGOfilmonthepreparedcellulosefilmwastransferredtotheITOsubstrate,andtheGOfilmwaslaminatedandspreadontheconduct-iveglasssurfaceusingethanolandwater,andthenthecellulosefilmwasdissolvedinacetonebysoak-inginacetone,andwashedrepeatedlywithacetonetoprevent the residual cellulose film on the sub-strat

42、efromaffectingthedeviceperformance.Then,theabovepreparedsc-SWCNTdispersionwasde-positedontheGOsurfacebyspincoatingmethodat2000rpmtoformauniformfilm,and2mgofC60wasweighedbyvacuumthermalevaporationmeth-odtomakeuniformvaporizationontothesurfaceofthecarbontubefilm.Theheterojunctionof(6,5)SWCNT/C60onthes

43、ubstratewasconstructedbyan-nealingat60Cfor1hundervacuum.Finally,the1246中国光学(中英文)第16卷metallicSWCNTfilmobtainedbysuctionfiltrationwas transferred to the sc-SWCNT/C60 heterojunc-tionbyrepeatingtheabovestepstoformasource-drain pattern.The channel width between thesource-drainelectrodesis200mandthelength

44、is400m.2.2TestingandcharacterizationIn this paper,the surface morphology of sc-SWCNTfilms/C60heterojunctionsaswellasmetal-lic SWCNT was characterized using a scanningelectronmicroscope(SEM,ZeissUltraPlus,Ger-many).Thetransmissionspectrawereobtainedbycharacterizing the transmittance of the samples to

45、lightusingaLambda950modelUV-Vis-NIRspec-trophotometer(USA).TheRamanpeakshiftsoftheheterojunctionwere analyzed by Raman spectro-scopy statistics at an excitation wavelength of514nm.Theoptoelectronicpropertiesofthedeviceswereevaluatedatroomtemperatureusingasemi-conductor parameter analyzer,and the cur

46、rent-voltage(I-V)curvesandcurrent-time(I-T)curvesofthedevicesweremeasuredundertheirradiationofvarious monochromatic laser diodes with ad-justable power as the signal source of the opticalpulses(laserwavelengthsincluding405,532,650,780,860,940and1064nm).3ResultsanddiscussionThestructurediagramoftheco

47、nstructedfield-effecttransistorisshowninFigure1(a),whereITOandGOformthegateanddielectriclayer,sc-SW-CNT/C60 heterojunction serves as the conductivechannel,and metallic SWCNT forms the source-drainelectrode.Figure1(b)showstheopticaltrans-missionspectrumwithinthevisiblelightrangeofthechannel(sc-SWCNT/

48、C60film)region.Theinsetshowsthephysicalimageofthepreparedfield-ef-fecttransistordevice.Itisobviousthatalmostallcarbonmaterial films deposited on ITO are com-pletelytransparent,andtheirtransmittanceisonly10%lowerthanthatofthesubstrate.When80%ofthesubstrateiscoveredwithsc-SWCNTfilm(form-ingchannels an

49、d electrodes),the optical transmit-tanceofthedeviceremainsabove80%,indicatingthatthedesignofthedevicedoesnotaffectthelightabsorption of the channel layer itself.Figure 2(a)shows the carbon nanotubes deposited on GO byspincoating,sc-SWCNTisevenlydistributedthrou-ghouttheentireregion,andnoobvioussurfa

50、cedis-persantsorotherpolymersarevisibleintheimage,demonstratingthe high dispersibility of the nan-otubes.Thecarbontubesolutiondispersedandcent-rifuged by ultrasound ensures the uniformity anddensityofthesc-SWCNTsfilm.Figure2(b)showsthe SEM image of the sc-SWCNT/C60 compositefilm,from which it can be

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服