1、二次函数的图象与各项系数之间的关系 1.二次项系数a二次函数中,作为二次项系数,显然2yaxbxca0a 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越0a aa大;当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越0a aa大总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决aaa定开口的大小2.一次项系数b 在二次项系数确定的前提下,决定了抛物线的对称轴ab 在的前提下,0a 当时,即抛物线的对称轴在轴左侧;0b 02bay当时,即抛物线的对称轴就是轴;0b 02bay当时,即抛物线对称轴在轴的右侧0b 02bay 在的前提下,结论刚好与上述相
2、反,即0a 当时,即抛物线的对称轴在轴右侧;0b 02bay当时,即抛物线的对称轴就是轴;0b 02bay当时,即抛物线对称轴在轴的左侧0b 02bay总结起来,在确定的前提下,决定了抛物线对称轴的位置ab的符号的判定:对称轴在轴左边则,在轴的右侧则,ababx2y0aby0ab概括的说就是“左同右异”总结:3.常数项c 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c yxy 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c yy0 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为0c yxy负 总结起来,决定了抛物线与轴交点的位置cy 总之,只
3、要都确定,那么这条抛物线就是唯一确定的abc,二次函数图象的对称 二次函数图象的对称一般有四种情况,可以用一般式或顶点式表达 1.关于轴对称x 关于轴对称后,得到的解析式是;2yaxbxcx2yaxbxc 关于轴对称后,得到的解析式是;2ya xhkx2ya xhk 2.关于轴对称y 关于轴对称后,得到的解析式是;2yaxbxcy2yaxbxc关于轴对称后,得到的解析式是;2ya xhky2ya xhk 3.关于原点对称 关于原点对称后,得到的解析式是;2yaxbxc2yaxbxc 关于原点对称后,得到的解析式是;2ya xhk2ya xhk 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化形状一定不会发生变化,因此永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择a合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式