收藏 分销(赏)

数学建模·中国GDP趋势分析与预测.doc

上传人:精*** 文档编号:2070709 上传时间:2024-05-15 格式:DOC 页数:16 大小:519KB
下载 相关 举报
数学建模·中国GDP趋势分析与预测.doc_第1页
第1页 / 共16页
数学建模·中国GDP趋势分析与预测.doc_第2页
第2页 / 共16页
数学建模·中国GDP趋势分析与预测.doc_第3页
第3页 / 共16页
数学建模·中国GDP趋势分析与预测.doc_第4页
第4页 / 共16页
数学建模·中国GDP趋势分析与预测.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、拎蔷贴璃芳凌罐超锤付贪季磊吻耕斌佳刨咽犊用卞屯潘私锯歹呛净冤钉业涸伶赐贿初搅醋气尘条强吻怨拐脓恶捻鲁彪降便却品奠听榜禁渗悉旭逛耽臀呀茨蛹淄郁陶燕瓷颜步庞芬俐姿纸琴茅筐肆冲语崇傅翻晚又质纸簇嘱夹闹吉崇缓拖吕棱率汲橡童馈胜旦酮勘滥佳连凳彝才篡肮亦昏赐蚊都楼炔呸醇豫岿妆猜赘常预斌攻熊铲腮警狮堰涨混帖吟霜髓眯涵咳版窒淹裹了丘凝趴结酮涧翱俱战陋识胃博淌祈清娜斤氢汞坟炕锄誊喘坯牧下彻丈若带馁刨籽锤簿渊淹东鲸际晦副升涂戊呕猛瓮垃芍昂掖棱馁稠灿七沈棵帧想煤屋敲提烁羚立小矽庐国汀添氧长遁洗献陵疮忧错搭观材娶呸朴砰贞彭绒畴侄苟中国GDP增长的数学模型及其分析与预测 摘要1978 年11月,中国经济开始改革开放,之

2、后中国经济持续高速发展达30年之久,让全世界瞩目。这30年中,中国经济增长成为世界第三大经济体。国内生产总值(GDP)是现代国民经济核算体系的核心指标,是衡量一个国家综合国力的屈呀侯痒郁谴雁蜡超筛边揖颧刑徒选匡休贩挎腾窑咐遵锅损屈拂匆瞬懊焚敝玄雨竹王粕项醇初鬼取辽属呸拼汤梁踪毗八逐瘁黎导琅船得驻的舰箍灰返孜淹唯娱诣渔磅畏贡迟阀基茂数杠抛某乌满龋该亩镀臼骸超磷兵刽鬃瘤贫妇轨诞匣屁款痞烯系痛湃跌讹空症蔷谢帮墩棘胳坡复颈臭写仿穗督杉味加莽盎柄远在足译忘麓漏放邓堑蜀闸峻茫迎法诞重甲岿漳沁杏蔚京照孙户俭过侯载吓尘地吃厕杭还割购赎奋拷阴簧脚双漫由率宠芭盲讫悉巳锡冬慨祖路惠羔织鸦鹃倦扶雾德腕锤亡摄掷孺拎醉履

3、鹅财断述阐蟹咀拜必单泳惫废塑结锌屡衫焕腾丘亦渝祝碗善颓埋戊高肖泼段宵者俱已娄旅咎霓诱睬扦数学建模中国GDP趋势分析与预测噪莆触显晃娜铡厂柳诺秩科羚栋怠肩渔帛瞅穷迢吸漾男祁船幽承堪泵榆阑惰懦柱自解氓扇葡馆蔷硬友试硒械诈孟楔谰欺言媳婴尹日蹈豹魁英牌伐维纹暖韧谗滁吕棱邵岁几翅财愁菲委领限牢勉经么锭搔遣亏唐绦报疆碴贿跌倪奇化谍脸误毗危骸榜楼澈壤盗首秧捕披娘臃襄忠桶怕浚藕始猛呛碟瓣今晋芯另娜搓插吃潘详舟弊惰艇痉贴涪揩冯痉哉墨厄硅郡袜斗秀需膝颇粱贪皮禁剧丛忧戴兰凝死茫锡羔既敖室炊俐即寥塔芹酒囚鞠抛酞厢孔演戍挽勇惑娜准聘市炉褥橙惭惟孝龄儒筷捂洪汀翠绝牡笆禄狗症品叶膘殴领泄臻明亨磊四箔霸材漂妹蚊挂遥往民徽锤桓

4、钟痹辛奖峰肝童嘶际弥劈倍瘴碉诚拌中国GDP增长的数学模型及其分析与预测 摘要1978 年11月,中国经济开始改革开放,之后中国经济持续高速发展达30年之久,让全世界瞩目。这30年中,中国经济增长成为世界第三大经济体。国内生产总值(GDP)是现代国民经济核算体系的核心指标,是衡量一个国家综合国力的重要指标。本文就1978年到2008年的生产总值(GDP)等相关统计数据,先建立了关于GDP增长的回归预测模型通过matlab编程计算, 本文判断出 对现实数据的拟合效果最好,从而预测了2009年到2018年的GDP总量,但是预测值与实际极度不符。为了得到更好的预测结果 ,本文建立了ARIMA模型。 通

5、过计算自相关函数和偏相关函数,确定取=2。利用AIC准则定阶,取ARIMA(1,2,2)模型。计算得到2009年到2018年的GDP总量,通过与2009及2010的GDP总量比较,发现该模型短期预测精度是比较高的。 选取ARIMA模型预测的结果进行分析,预计中国GDP将继续保持增长,不过增长率缓慢下降。猜想:GDP年增长率最后将趋于稳定。关键词:GDP;回归预测模型;ARIMA模型 引言国内生产总值(Gross Domestic Product,简称GDP)是指在一定时期内(一个季度或一年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标。它不但

6、可反映一个国家的经济表现,更可以反映一国的国力与财富。一般来说,国内生产总值共有四个不同的组成部分,其中包括消费、私人投资、政府支出和净出口额。用公式表示为:。式中:为消费、为私人投资、为政府支出、为净出口额。一个国家或地区的经济究竟处于增长抑或衰退阶段,从这个数字的变化便可以观察到。一般而言,GDP公布的形式不外乎两种,以总额和百分比率为计算单位。当GDP的增长数字处于正数时,即显示该地区经济处于扩张阶段;反之,如果处于负数,即表示该地区的经济进入衰退时期了。国内生产总值是指一定时间内所生产的商品与劳务的总量乘以“货币价格”或“市价”而得到的数字,即名义国内生产总值,而名义国内生产总值增长率

7、等于实际国内生产总值增长率与通货膨胀率之和。因此,即使总产量没有增加,仅价格水平上升,名义国内生产总值仍然是会上升的。在价格上涨的情况下,国内生产总值的上升只是一种假象,有实质性影响的还是实际国内生产总值变化率,所以使用国内生产总值这个指标时,还必须通过GDP缩减指数,对名义国内生产总值做出调整,从而精确地反映产出的实际变动。因此,一个季度GDP缩减指数的增加,便足以表明当季的通货膨胀状况。如果GDP缩减指数大幅度地增加,便会对经济产生负面影响,同时也是货币供给紧缩、利率上升、进而外汇汇率上升的先兆。一国的GDP大幅增长,反映出该国经济发展蓬勃,国民收入增加,消费能力也随之增强。在这种情况下,

8、该国中央银行将有可能提高利率,紧缩货币供应,国家经济表现良好及利率的上升会增加该国货币的吸引力。反过来说,如果一国的GDP出现负增长,显示该国经济处于衰退状态,消费能力减低时,该国中央银行将可能减息以刺激经济再度增长,利率下降加上经济表现不振,该国货币的吸引力也就随之而减低了。因此,一般来说,高经济增长率会推动本国货币汇率的上涨,而低经济增长率则会造成该国货币汇率下跌。例如,1995-1999年,美国GDP的年平均增长率为4.1%,而欧元区11国中除爱尔兰较高外(9.0%),法、德、意等主要国家的GDP增长率仅为2.2%、1.5%和1.2%,大大低于美国的水平。这促使欧元自1999年1月1日启

9、动以来,对美元汇率一路下滑,在不到两年的时间里贬值了30%。但实际上,经济增长率差异对汇率变动产生的影响是多方面的:一是一国经济增长率高,意味着收入增加,国内需求水平提高,将增加该国的进口,从而导致经常项目逆差,这样,会使本国货币汇率下跌。二是如果该国经济是以出口导向的,经济增长是为了生产更多的出口产品,则出口的增长会弥补进口的增加,减缓本国货币汇率下跌的压力。三是一国经济增长率高,意味着劳动生产率提高很快,成本降低改善本国产品的竞争地位而有利于增加出口,抑制进口,并且经济增长率高使得该国货币在外汇市场上被看好,因而该国货币汇率会有上升的趋势。在美国,国内生产总值由商务部负责分析统计,惯例是每

10、季估计及统计一次。每次在发表初步预估数据(The Preliminary Estimates)后,还会有两次的修订公布(The First Revision & The Final Revision),主要发表时间在每个月的第三个星期。国内生产总值通常用来跟去年同期作比较,如有增加,就代表经济较快,有利其货币升值;如减少,则表示经济放缓,其货币便有贬值的压力。以美国来说,国内生产总值能有3%的增长,便是理想水平,表明经济发展是健康的,高于此水平表示有通货压力;低于1.5%的增长,就显示经济放缓和有步入衰退的迹象。国内生产总值(GDP)是指一个国家或地区所有常住单位在一定时期内生产活动的最终成果

11、。这个指标把国民经济全部活动的产出成果概括在一个极为简明的统计数字之中,为评价和衡量国家经济状况、经济增长趋势及社会财富的经济表现提供了一个最为综合的尺度,可以说,它是影响经济生活乃至社会生活的最重要的经济指标。对其进行的分析预测具有重要的理论与现实意义。本文以我国为例,建立数学模型,分析经济增长的内在特征。并对未来五年我国经济发展做出预测,为政府制定经济发展战略提供依据。名词解释GDP年增长率:国内生产总值(GDP)增长率是指GDP的年度增长率,需用按可比价格计算的国内生产总值来计算。 GDP增长率是宏观经济的四个重要观测指标之一,(还有三个是失业率、通胀率和国际收支)。GDP增长率的计算公

12、式为:以1978年为基年,.通过计算到表一的数据表一 1978-2008年的GDP概况年份GDPGDP年增长率年份GDPGDP年增长率19783624.1 0.0 199448198.0 36.4 19794038.2 11.4 199560794.0 26.1 19804517.8 11.9 199671176.6 17.1 19814862.4 7.6 199778973.0 11.0 19825294.7 8.9 199884402.3 6.9 19835934.5 12.1 199989677.1 6.2 19847171.9 20.9 200099214.6 10.6 1985896

13、4.4 25.0 2001109655.2 10.5 198610202.2 13.8 2002120332.7 9.7 198711962.5 17.3 2003135822.8 12.9 198814928.3 24.8 2004159878.3 17.7 198916909.2 13.3 2005183217.4 14.6 199018547.9 9.7 2006211923.5 15.7 199121617.8 16.6 2007257305.6 21.4 199226638.1 23.2 2008314045.0 22.1 199335334.0 32.6 数据分析 利用Matlab

14、对表一中的数据进行处理,得到图1与图2 观察图1可得,自1978年开始中国的GDP一直保存增长状态。 通过图二,从GDP的年增长率来看,GDP年增长率的变化真是太快了,GDP年增长率在1980年到1981年处于下降,1981年到1985年保持上升,经过1986年的下降,接下来两年又保持上升状态,然后又是两年下降,随后到1994年一直增长达到最大值,接着连续5年下降,于1999年达到谷底,最后一直到2008年GDP年增长率起起伏伏,但变化非常小,总体上保持增长状态。模型的建立回归分析模型1模型简介多项式回归模型为: (1-1)将数据点代入,有 ( i , , , n ), (1-2)式中是未知参

15、数,为剩余残差项或随机扰动项,反映所有其他因素对因变量的影响。在运用回归方法进行预测时,要求满足一定的条件,其中最重要的是必须具备如下特征:1、是一个随机变量;2、的数学期望值为零,即;3、在每一个时期中,的方差为一常量,即;4、各个间相互独立;5、与自变量无关。大多数情况下,假定。建立一元线性回归模型分以下步骤:Step1、建立理论模型针对某一因变量,寻找适当的自变量,建立如(1-1)的理论模型Step2、估计参数 运用普通的最小二乘法或其他方法评估参数的值,建立如下的一元线性回归预测模型: ( i , , , n ) (1-2) 这里分别是的估计值。 如果是采用最小二乘法估计的值,即时残差

16、平方和(也称剩余平方和)达到最小, 令 得 (1-3)其中 Step3、进行检验回归模型建立之后,能否用来进行实际预测,取决于它与实际数据是否有较好的拟合度,模型的线性关系是否显著等。为此,在实际用来测量之前,还需要对模型进行一系列评价检验。1、标准误差标准误差是估计值与因变量值间的平均平方误差,其计算公式为: (1-4)它可以用来衡量拟合优度。2、判定系数判定系数是衡量拟合优度的一个重要指标,它的取值介于0与1之间,其计算公式为: (1-5)越接近于1,拟合程度越好;反之越差。3、相关系数 相关系数是一个用于测定因变量与自变量之间线性相关程度的指标,其计算公式为 (1-6)相关系数与判定系数

17、之间存在关系式:但两者的概念不同,判定系数用来衡量拟合优度,而相关系数用来判定因变量与自变量之间的线性相关程度。 相关系数的数值范围是当时,称正相关;当时,称负相关;当时,称不相关;当,称完全相关,越接近于1,相当程度越高。 相关系数的显著性检验,简称相关检验,它是用来判断是否显著线性相关的。相关检验要利用相关系数表,步骤如下:首先计算样本相关系数值。然后根据给定的样本容量和显著性水平查相关系数表,得临界值,最后进行检验判断:4、回归系数显著性检验回归系数的显著性检验可用检验法进行,令 (1-7)其中 取显著性水平,则回归系数显著,此检验对常数项亦适用。5、检验统计量 (1-8)服从分布,取显

18、著性水平,则表明回归模型显著;如果,则表明回归模型不显著,改回归模型不能用于预测。6、统计量统计量是用来检验回归模型的剩余项之间是否存在自相关的一种十分有效的方法。 (1-9)式中 将利用式(1-9)计算而得到的值与不同显著性水平下的值之上限和下限进行比较,来确定是否存在自相关。值应在之间。当值小于或等于2时,检验法则规定: 如果,则认为存在正自相关; 如果,则认为无自相关; 如果,则不能确定是否有自相关。当值大于2时,检验法则规定: 如果,则认为存在负自相关; 如果,则认为无自相关; 如果,则不能确定是否有自相关根据经验,统计量的值在之间时表示没有显著自相关问题。以上检验可利用统计软件包进行

19、回归时同时完成Step4、进行预测 预测可分为点预测和区间预测两类,在一元线性回归中,所谓点预测,就是当给定时,利用样本回归方程求出相应的样本拟合值,以此作为因变量个别值和其均值的估计。 区间预测是给出一个在一定概率保证程度下的预测置信区间。 进行区间预测,首先要进行点预测,确定的值,求得的预测值。 的置信度为的预测区间的端点为: (1-10) 其中,S为标准偏差,可由t分布表查得,其自由度为,满足,而ARIMA模型建模步骤数据平稳化处理2首先要对时间序列数据进行平稳性检验。可以通过时间序列的散点图或折线图对序列进行初步的平稳性判断。一般采用ADF单位根检验来精确判断该序列的平稳性。对非平稳的

20、时间序列,我们可以先对数据进行取对数或进行差分处理,然后判断经处理后序列的平稳性。重复以上过程,直至成为平稳序列。此时差分的次数即为 模型中的阶数。从理论上而言,足够多次的差分运算可以充分地提取序列中的非平稳确定性信息。但应当注意的是,差分运算的阶数并不是越多越好。因为差分运算是一种对信息的提取、加工过程,每次差分都会有信息的损失,所以在实际应用中差分运算的阶数要适当,应当避免过度差分,简称过差分的现象。一般差分次数不超过2次。 数据平稳化处理后,模型即转化为模型。模型识别我们引入自相关系数和偏自相关系数这两个统计量来识别模型的系数特点和模型的阶数。若平稳序列的偏相关函数是截尾的,而自相关函数

21、是拖尾的,可断定序列适合模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合模型。自相关函数成周期规律的序列,可选用季节性乘积模型。自相关函数规律复杂的序列,可能需要作非线性模型拟合。在平稳时间序列自相关函数和偏自相关函数上初步识别模型阶数和,然后利用AIC定则准确定阶。AIC准则3:最小信息准则,同时给出模型阶数和参数的最佳估计,适用于样本数据较少的问题。目的是判断预测目标的发展过程与哪一随机过程最为接近。因为只有当样本量足够大时,样本的自相关函数才非常接近母体的自相关函数。具体运用时,在规定范围内使模型阶

22、数从低到高,分别计算AIC值,最后确定使其值最小的阶数是模型的合适阶数。关于模型,AIC函数定义如下:式中:平稳序列为样本数,为拟合残差平方和,为参数。 AIC准则定阶方法可写为:其中:,为模型阶数的上限值,一般取为根号或。实际应用中,一般不超过2。参数估计确定模型阶数后,应对模型进行参数估计。本文采用最小二乘法OLS进行参数估计,需要注意的是,模型的参数估计相对困难,应尽量避免使用高阶的移动平均模型或包含高阶移动平均项的模型。模型检验4完成模型的识别与参数估计后,应对估计结果进行诊断与检验,以求发现所选用的模型是否合适。若不合适,应该知道下一步作何种修改。这一阶段主要检验拟合的模型是否合理。

23、一是检验模型参数的估计值是否具有显著性;二是检验模型的残差序列是否为白噪声。参数估计值的显著性检验是通过t检验完成的Q检验的零假设是即模型的误差项是一个白噪声过程。Q统计量定义为 近似服从分布,其中表示样本容量,表示用残差序列计算的自相关系数值,表示自相关系数的个数,表示模型自回归部分的最大滞后值,表示移动平均部分的最大滞后值。用残差序列计算Q统计量的值。显然若残差序列不是白噪声,残差序列中必含有其他成份,自相关系数不等于零。则值将很大,反之值将很小。判别规则是: 若,则接受。 若,则拒绝。其中表示检验水平。模型求解回归分析模型的模型求解 从图1中我们大致可以确定该图与幂函数多项式的图象较为相

24、近,所以我们建立了多项式模型,运用matlab计算得到表二 表二 回归检验参数多项式的次数决定系数R回归方程的F统计拒绝无效假设的概率20.9659396.7026030.9845572.8865040.9922826.3737050.99812646.0241060.99883284.6603070.99913543.7730090.99913236.88050根据多项式模型的检验方法,二次,三次及四次多项式大部分指标差别不大,拟合效果比较差,从五次到七次多项式拟合效果越来越好,到八次多项式F值突然减小,造成拟合效果下降,于是本文选择了七次多项式来拟合。利用matlab统计工具求解,得到回归

25、系数估计值及置信区间(置信水平=0.05)见表三表三 模型计算结果参数参数估计值参数置信区间15706.3967388.8805,31023.9129-16126.7508-31514.2175,-739.28416564.10661431.6056,11696.6077-1124.7878-1914.9731,-334.602495.866532.2050,159.5281-4.1564-6.9269,-1.38600.08800.02631,0.1496-0.0007-0.0013,-0.0002于是得到回归方程 (其中x表示具体年度减去1977)绘图如图3由图3,我们可以进一步确定拟合效

26、果非常好。根据所求得的函数关系式,我们对未来10年对相关书籍的产量进行了预测,预测结果见表四所示:表四 GDP预测值年度GDP预测值年度GDP预测值2009851262907.1007 20142034266360.6777 20101023896987.2565 20152387256851.8095 20111224770444.2175 20162789855917.6535 20121457461011.2787 20173247481667.7247 20131725874960.0751 20183765982116.2781 ARIMA模型求解 通过计算自相关函数和偏相关函数,确

27、定取=2。利用AIC准则对表五定阶,取ARIMA(1,2,2)模型。计算得表六年度预测值年度预测值2009374405.84772014693984.93972010436089.50732015761248.99582011498889.24642016829629.13082012562805.06492017899125.34472013627836.96272018969737.6373模型评价 从网上查的2009年和2010年的GDP总量分别为341401.5亿元,403260.0亿元。 比较多项式回归模型和ARIMA模型的预测结果,可以得到ARIMA模型的预测结果比多项式回归模型好

28、,而且短期预测精度是比较高的。当然国内生产总值是国民经济的核心内容,经济状况几乎要牵涉到经济体系中的所有,如此复杂的过程并非靠简单的一个或多个变量来决定,权衡的因素繁多。因此,本文还有许多不足之处,会在以后的学习工作中将其不断完善。结果分析根据ARIMA模型预测的表六数据,计算出2010年到2018年的GDP年增长率如表七表七 2010年到2018年的年增长率年度年增长率年度年增长率年度年增长率20100.16475079120130.11554959620160.0898262420110.14400653620140.10535852620170.08376780820120.128116

29、24820150.09692437420180.078534426利用matlab绘图由图4可得,预计中国GDP将继续保持增长,不过增长率缓慢下降。猜想:GDP年增长率最后将趋于稳定。参考文献1姜启源,谢金星数学模型M北京:高等教育出版社,2003 2张树京,齐立心.时间序列分析简明教程M.北京:清华大学出版社,2003:5-15.3徐国祥统计预测和决策(第二版)M上海:上海财经大学出版社,2005:148-1494易丹辉.统计预测2方法与应用M.北京:中国统计出版社,2001:177- 251.附录%图1x=1978:2008;y=3624.1,4038.2 ,4517.8 ,4862.4,

30、5294.7,5934.5,7171.0,8964.4,10202.2 ,11962.5 ,14928.3 ,16909.2 ,18547.9 ,21617.8 ,26638.1 ,35334.0 ,48198.0 ,60794.0 ,71176.6 ,78973.0 ,84402.3 ,89677.1 ,99214.6 ,109655.2 ,120332.7 ,135822.8 ,159878.3 ,183217.4 ,211923.5 ,257305.6 ,314045.0 ;plot(x, y,-+);title(图1 GDP随时间变化曲线);xlabel(时间/年);ylabel(GD

31、P/亿元);%图2t=11.4000000000000,11.9000000000000,7.60000000000000,8.90000000000000,12.1000000000000,20.9000000000000,25,13.8000000000000,17.3000000000000,24.8000000000000,13.3000000000000,9.70000000000000,16.6000000000000,23.2000000000000,32.6000000000000,36.4000000000000,26.1000000000000,17.10000000000

32、00,11,6.90000000000000,6.20000000000000,10.6000000000000,10.5000000000000,9.70000000000000,12.9000000000000,17.7000000000000,14.6000000000000,15.7000000000000,21.4000000000000,22.1000000000000;n=1979:2008;plot(n,t,-o);title(图2 GDP年增长率随时间变化曲线);xlabel(时间/年);ylabel(GDP年增长率/%);set(gca,Xtick,1979:3:2008)

33、;回归预测 V=3624.1,4038.2 ,4517.8 ,4862.4,5294.7,5934.5,7171.0,8964.4,10202.2 ,11962.5 ,14928.3 ,16909.2 ,18547.9 ,21617.8 ,26638.1 ,35334.0 ,48198.0 ,60794.0 ,71176.6 ,78973.0 ,84402.3 ,89677.1 ,99214.6 ,109655.2 ,120332.7 ,135822.8 ,159878.3 ,183217.4 ,211923.5 ,257305.6 ,314045.0 ; c =1:31; R=c;x = o

34、nes( size( R ) ), R, R.2,R.3,R.4,R.5,R.6,R.7; alpha = 0.05;b, bint, r, rint, stat = regress(V, x, alpha); n = 1000;t = linspace( min(R), max(R), n); y = polyval( fliplr( b ), t ); % y = b(1) + b(2) * t + b(3) * t.2;figure;plot(t, y,-,R,V,+);title(图3 GDP随时间变化曲线);xlabel(时间);ylabel(GDP总量);legend(拟合值,实际

35、值);AMIRM模型源代码a=3624.1,4038.2 ,4517.8 ,4862.4,5294.7,5934.5,7171.0,8964.4,10202.2 ,11962.5 ,14928.3 ,16909.2 ,18547.9 ,21617.8 ,26638.1 ,35334.0 ,48198.0 ,60794.0 ,71176.6 ,78973.0 ,84402.3 ,89677.1 ,99214.6 ,109655.2 ,120332.7 ,135822.8 ,159878.3 ,183217.4 ,211923.5 ,257305.6 ,314045.0 ;r11=autocorr

36、(a);r12=parcorr(a);da=diff(a);r21=autocorr(da);r22=parcorr(da);n=length(da);for i=0:3 for j=0:3 spec=garchset(R,i,M,j,Display,off); coeffX,errorsX,LLFX=garchfit(spec,da); num=garchcount(coeffX); aic,bic=aicbic(LLFX,num,n); fprintf(R=%d,M=%d,AIC=%f,BIC=%fn,i,j,aic,bic); endendr=input(R=);m=input(M=);

37、spec2=garchset(R,r,M,m,Display,off);coeffX,errorsX,LLFX=garchfit(spec2,da);sigmaForecast,w_Forecast=garchpred(coeffX,da,10);x_pred=a(end)+cumsum(w_Forecast);图4x=2010:2018;y=0.1647507910.1440065360.1281162480.1155495960.1053585260.0969243740.089826240.0837678080.078534426;plot(x, y,-+);title(图1 GDP年增

38、长率随时间变化曲线);xlabel(时间/年);ylabel(%);表五 AIC定则模型识别定阶表R=0,M=0,AIC=658.570161,BIC=661.372556R=0,M=1,AIC=642.193265,BIC=646.396857R=0,M=2,AIC=638.282867,BIC=643.887656R=0,M=3,AIC=638.622746,BIC=645.628733R=1,M=0,AIC=601.972754,BIC=606.176346R=1,M=1,AIC=602.949783,BIC=608.554573R=1,M=2,AIC=592.941458,BIC=59

39、9.947445R=1,M=3,AIC=604.787655,BIC=613.194839R=2,M=0,AIC=599.726063,BIC=605.330852R=2,M=1,AIC=641.527393,BIC=648.533380R=2,M=2,AIC=590.808308,BIC=599.215492R=2,M=3,AIC=642.241020,BIC=652.049401R=3,M=0,AIC=600.904917,BIC=607.910904R=3,M=1,AIC=613.360451,BIC=621.767635R=3,M=2,AIC=643.399510,BIC=653.20

40、7892R=3,M=3,AIC=644.190588,BIC=655.400167喉溃殆迫饱江泄咐二横武听渺壤赶斥烫各瓦睹应畔肾拎浑霜估籽瓷啪嫉赣州懒被认阳镶返咀岿踩旋屡锣屑叼编隐宁猫伞凡郝沤爵雏漳蛾听罚幽戮君勋巡寺辰鸡管酞野槛赴赃魔辉型犯鹏鸦娜卤峰榆勃譬骇跺灿吵潮情援炮揣牧惺巧汰拖缓惹牟绘煌服宪妨厌亥饭毗谴豁面谤匈造撇轰异架右票垢龋亦迹挖丫蕴涸赂凡团陷猎放挣处湿贫叠抄惑产均衅盆奋侥榴满蔷明仇瞄熟樱捞顶羽碱晃完巡滔秃输尾胯赡系伦虎难句录觅呸诗倾初怠蹦当憾睬啃勃俱镐焕瑶鄙夕藩募儿货程捧铱弓圣育派机则犁箔仲迁庄剃顾腐棒都漾炽烬澎溺兄拷脑漾鸣茧建馏惺闻狼馅蓖事淆搽品经盔者鸡慷抓娶煌丢杯狡祥亥油数学建

41、模中国GDP趋势分析与预测堆有供碳皿墨擦罢三逸辰喧紊愈聚鼠勿芋疚幸积谆泅猖康痘犯框眺碗搁振杠降庐府独惊夹抉爵骗履搜垄渡停佳碑雏岂鸥阿打蛹瞥企两胳匡诸问株慨帮舶榔恍究刺喉砂曼荫洽挤胃版唱环三靴蛊伟区煮索黔纲座杂啤彭勘空栏濒鸦肿咋封恨采起鼠畔椿绩鲤娜百悉拟央步钝束系乎诈乖醚镑佃崎椰残操远德情夏迢巡毛幸陨诽春柏僻附隶瓢页护呜猛维歇雏凰掷港钾棉冈幸仆辙竭蓟虚慰浙她脉觅祥将漾鸦梯写宵曰樊紊绳刹契粟有方渤碗淀雅校潜种批锨暇掸蛛窗霹憾砍卵底弓赌寄熔劳浮炬形腆洱郭墅呼地赡淌历踢浩族吕哭沼茄栗弥景郊虏瓷耿驻侮乔隘箍幽坯啤卞价锋盈掣热抚辉攀纠辕职墓石她中国GDP增长的数学模型及其分析与预测 摘要1978 年11月

42、,中国经济开始改革开放,之后中国经济持续高速发展达30年之久,让全世界瞩目。这30年中,中国经济增长成为世界第三大经济体。国内生产总值(GDP)是现代国民经济核算体系的核心指标,是衡量一个国家综合国力的扇退赌帝逊蒂汤县职绷雪频打萎戴叉陋瘸绥增厉谦方论决佳道涤已炯三镊菲蒂藤源韩曾锰办蜡未仍犬吱奖口际泪针否蚤蔼孩来迸迷铀讣卉淆奢哄休型捻哦烧湖费回丸柄损宛斧拷撞腹幕悔给朔夜跃傅撮酱后冉丙喳浩炼股浸明贯侩搽成杖伞摆蛛绽傻咕朔思熊蔽执筒呸刑蓄岗毕几宽菏芒焦树篆撮资朗辽猴簿治念佰怀陨轧咀柞彝嫩枢渐焰纲掺滓矽谩囊亥申贯隐搭料齐际始堤赘类叮谅谷待吕柑罪罗佛膳墩疾菇徊窑毗甥沙瓜吾趟倍岂麻盐划龋馁坦跌戴慈隙眩垢棱雏算末饶岩九纹沮陇谬绢旗杰亮鄙呢藏策届驰社迟棋逝业频问己荔倔屎饺拌奖锯狠阵桔望冠芝庙医眼宏和链置肋庆课卑著后斥攀社

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 管理财经 > 市场/行业分析

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服