收藏 分销(赏)

混凝土中氯离子扩散的二维分数阶数值分析.pdf

上传人:自信****多点 文档编号:2050049 上传时间:2024-05-14 格式:PDF 页数:7 大小:1.72MB
下载 相关 举报
混凝土中氯离子扩散的二维分数阶数值分析.pdf_第1页
第1页 / 共7页
混凝土中氯离子扩散的二维分数阶数值分析.pdf_第2页
第2页 / 共7页
混凝土中氯离子扩散的二维分数阶数值分析.pdf_第3页
第3页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Modeling and Simulation 建模与仿真建模与仿真,2023,12(5),4588-4594 Published Online September 2023 in Hans.https:/www.hanspub.org/journal/mos https:/doi.org/10.12677/mos.2023.125418 文章引用文章引用:蒋韬,侍爱玲,白羽.混凝土中氯离子扩散的二维分数阶数值分析J.建模与仿真,2023,12(5):4588-4594.DOI:10.12677/mos.2023.125418 混凝土中氯离子扩散的二维分数阶数值分析混凝土中氯离子扩散的二维分数

2、阶数值分析 蒋蒋 韬,侍爱玲,白韬,侍爱玲,白 羽羽 北京建筑大学理学院,北京 收稿日期:2023年8月4日;录用日期:2023年9月8日;发布日期:2023年9月14日 摘摘 要要 氯离子对混凝土结构的侵蚀是影响其耐久性的重要原因,而扩散作用是氯离子侵入到混凝土中的最主要氯离子对混凝土结构的侵蚀是影响其耐久性的重要原因,而扩散作用是氯离子侵入到混凝土中的最主要方式之一。对于混凝土中氯离子扩散的二维问题,首先基于方式之一。对于混凝土中氯离子扩散的二维问题,首先基于Caputo分数阶导数建立了变扩散系数的时间分数阶导数建立了变扩散系数的时间分数阶扩散模型,随后结合分数阶扩散模型,随后结合L1算法

3、建立了数值求解该模型的有限差分格式。接着,利用已有实验数据对算法建立了数值求解该模型的有限差分格式。接着,利用已有实验数据对分数阶导数的选取进行了分析,并对氯离子在混凝土中的扩散进行了预测。分数阶导数的选取进行了分析,并对氯离子在混凝土中的扩散进行了预测。关键词关键词 氯离子,扩散,二维,分数阶导数,数值分析氯离子,扩散,二维,分数阶导数,数值分析 Numerical Analysis on the Two-Dimensional Fractional Diffusion Model of Chloride Ion in Concrete Tao Jiang,Ailing Shi,Yu Bai

4、 School of Science,Beijing University of Civil Engineering and Architecture,Beijing Received:Aug.4th,2023;accepted:Sep.8th,2023;published:Sep.14th,2023 Abstract The erosion of chloride ions on concrete structures is an important reason to affect its durability,and diffusion is one of the most import

5、ant ways for chloride ions to invade concrete.This paper is focusing on the two-dimensional problem of chloride ion diffusion in concrete.Firstly,the tem-poral fractional diffusion model of Chloride ion with variable diffusion coefficient in concrete is established based on the Caputo fractional der

6、ivative.Next,the finite difference scheme combined with L1 algorithm is established.At last,the value of fractional derivatives is analyzed using exist-蒋韬 等 DOI:10.12677/mos.2023.125418 4589 建模与仿真 ing experimental data,and the diffusion of chloride ions in concrete is predicted.Keywords Chloride Ion

7、,Diffusion,Two-Dimensional,Fractional Derivative,Numerical Analysis Copyright 2023 by author(s)and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License(CC BY 4.0).http:/creativecommons.org/licenses/by/4.0/1.引言引言 众所周知,钢筋混凝土具有抗压性能好、无收缩、剪切强度高、强度大、正常情况下不

8、易变形等优点,这些优点使得钢筋混凝土被广泛应用于土木工程、水利建设、港口加固、桥梁搭建等领域中,造就了其在工程结构设计中的重要地位。然而氯离子对钢筋侵蚀进而导致混凝土结构提前失效已成为全世界普遍关注的问题1。氯离子能够进入到混凝土之中也不是凭借单一的途径,比如扩散作用、渗透作用、毛细作用、电迁移作用、吸附作用或者是以上两种或者多种方式的结合,而最主要的氯离子侵入混凝土的方式为前三种,而且扩散作用起主导作用2。目前对于氯离子在混凝土中的扩散作用的描述大都是基于 Fick 第二扩散定律,常见的二维模型为:2222CCCDtxy=+(1)其中 C 为氯离子的浓度,t 为时间,D 为扩散系数,x 和

9、y 分别代表扩散的两个方向。关于扩散系数 D,Thomas 等3提出氯离子的扩散系数是时变函数 Dt的观点,即:00mttDDt=(2)式中 D0和 Dt分别为扩散时间为 t0和 t 时混凝土的氯离子扩散系数,m 为时间依赖性常数,0t,其中t0时测定混凝土的氯离子扩散系数为 D0。近年来,分数阶微积分已成为当前国际上的一个热点研究课题,因为分数阶微积分算子是一个具有记忆效应的非局部算子,它对时间上的历史依赖性和空间上的长程相关性。因而基于分数阶导数的扩散模型也倍受关注。Chen 等4考虑了氯离子和混凝土之间的相互作用,使用朗缪尔等温线描述了氯离子浓度。Wei 等5建立了 Caputo 型氯离

10、子时间分数阶扩散模型,通过均方位移的方法近似得到扩散系数。杨帅6以孔隙介质中的非达西渗流和反常扩散现象为研究对象,借助分数阶微积分理论,系统地对孔隙介质中的低速、高速非达西渗流,溶质反常输运等进行了研究。王一晗等7建立了混凝土中变扩散系数的时间变分数阶的氯离子一维扩散模型。本文将 Caputo 型分数阶导数引入模型(1),并考虑时变扩散系数(2),建立了变扩散系数的时间分数阶二维氯离子扩散模型,随后结合 L1 算法建立了数值求解该模型的有限差分格式。接着,利用已有实验数据对分数阶导数的选取进行了分析,并对氯离子在混凝土中的扩散进行了预测。2.扩散模型扩散模型 基于 Fick 第二定律和 Cap

11、uto 型分数阶导数8,考虑氯离子在混凝土中的二维扩散问题,建立变系Open AccessOpen Access蒋韬 等 DOI:10.12677/mos.2023.125418 4590 建模与仿真 数时间分数阶扩散模型,描述为:()()()()()220022000,00,0,msstCCCDttxyC x yCCy tC Cy tCC xtC C xtC=+=+=+=,(3)式中t为 Caputo 分数阶算子;x 和 y 分别为两个方向侵蚀深度;t 为混凝土结构暴露于氯离子环境中的时间,0t;(),C x y t表示 t 时刻(),x y位置处的氯离子浓度;D0和 Dt分别为扩散时间为

12、t0和 t 时的扩散系数;为阶数,01;Cs为混凝土表面氯离子浓度;C0为氯离子内部初始浓度;C0和 Cs是常数;m 为时间依赖性常数。3.数值格式数值格式 本节使用有限差分格式和 L1 算法相结合的方法,求解上面所建立的变系数时间分数阶扩散模型(3)。首先定义ixi x=,0,1,iM=,jyj y=,0,1,jN=,ktk t=,0,1,kR=,其中x和y为空间步长,t为时间步长。模型(3)中的整数阶导数项在点(ixx=,jyy=,1/2ktt=)的离散格式为:()()()()()()()()1/22111122,111222,2,2,2,2ijkijkijkijkijkx y tijki

13、jkC xy tC x y tC xy tC xy tCxxC xy tC x y txtx+=+(4)()()()()()()()()1/22111122,111222,2,2,2,.2ijkijkijkijkijkx y tijkijkC x ytC x y tC x ytC x ytCyyC x ytC x y tyty+=+(5)分数阶导数项借助L1算法进行数值离散,L1算法的定义见8,模型(3)中的分数阶导数项在点(ixx=,jyy=,1/2ktt=)的离散格式为:()()()()()()()()()1/21011(,)11211,222,2ijkijkijkijijkx y tki

14、jnijnk nk nnC x y tC x y tC x y tC x y tCttC x y tC x y tOt=+=+(6)其中()111,0,1,2,ssssR=+=。最后,在(ixx=,jyy=,1/2ktt=)处离散扩散模型(3),将(4)(5)(6)代入化简差分格式整理可得:()()()()()123,21,21,3,13,111111123,21,21,3,13,1101111,11,12222kkkkkkkkkkki jijiji ji jkkkkkkkkkkki jijiji ji jknnki ji jk nk ni ji jnrrrCr Cr Cr Cr CrrrCr

15、 Cr Cr Cr CrCCrCC+=+=+(7)蒋韬 等 DOI:10.12677/mos.2023.125418 4591 建模与仿真 其中,()()()2222120 030 033,.222mmmmkmkmtxyrrD tktyrD tktx=(8),ki jC表示点(ixx=,jyy=,ktt=)处氯离子浓度的数值解。结合模型(3)中的初始条件和边界条件,求解方程组(7),就可求得,ki jC。4.工程算例工程算例 张伟等9对某码头的构件的氯离子含量进行了测定。构件保护层厚度 50 mm,全长为 400 m,初始氯离子浓度 C0为 0,表面氯离子浓度 Cs为 0.29%,扩散系数 D

16、0为 3.48 106 mm2/s。全部工程完工 15年后,对 150 mm 处混凝土中不同深度 x(mm)的氯离子浓度进行了三次测量,结果如表 1 所示。Table 1.Measured values of chloride ion concentration C(%)at different depths x(mm)in concrete at y=150 mm 9 表表 1.y=150 mm 处混凝土中不同深度 x(mm)的氯离子浓度 C(%)的三组测量值9 编号 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 L1 0.288 0.214

17、 0.189 0.205 0.182 0.107 0.066 0.040 0.034 0.021 L2 0.276 0.234 0.204 0.201 0.198 0.174 0.085 0.043 0.041 0.025 L3 0.284 0.215 0.224 0.215 0.201 0.158 0.121 0.086 0.056 0.042 4.1.参数分析参数分析 对于模型(3),工程上 t0一般取为 28 天,时间依赖性常数 m 和分数阶导数的阶数 对氯离子在混凝土中的扩散有很大影响。选取时间为 15 年,将不同的 m 和 代入数值格式(7)得到图 1。Figure 1.Curve

18、of chloride ion concentration under different m and at y=150 mm 图图 1.不同 m 和 下 y=150 mm 处混凝土中氯离子浓度曲线 从图 1(a)可以看出,当时间依赖性常数 m 固定时,随着分数阶导数的阶数 的增大,扩散越来越快,恰好说明了分数阶微分对时间上的历史依赖性。而当分数阶导数的阶数 固定时,随着时间依赖性常数m 的增大,导致扩散系数减小,从而减缓了扩散速度,如图 1(b)所示。其中 m=0 时,就是扩散系数为常数的情况。蒋韬 等 DOI:10.12677/mos.2023.125418 4592 建模与仿真 4.2.

19、参数选取参数选取 为了进一步预测氯离子扩散趋势,对于模型(3)中的时间依赖性常数 m 和分数阶导数的阶数,根据表 1 中的值,我们定义()102110iE=计算值测量平均值均方误差,(9)其中计算值是求解数值格式(7)得到的结果,测量平均值为三次测量值的平均。不同 m 和 取值时计算均方误差 E,部分如表 2 所示。结合上面参数分析的结果,为了使均方误差 E 尽可能小,固定 m 和 中的一个取值,可以确定另外一个参数的取值。比如,m=0.10 时,选取 =0.94。Table 2.Mean squared error E at different m and 表表 2.不同 m 和 得到的均方

20、误差 E m E m E 0 0.88 0.02492 0.10 0.93 0.02420 0 0.89 0.02447 0.10 0.94 0.02393 0 0.90 0.02502 0.10 0.95 0.02474 0.05 0.90 0.02516 0.15 0.95 0.02422 0.05 0.91 0.02426 0.15 0.96 0.02358 0.05 0.92 0.02439 0.15 0.97 0.02407 Figure 2.Comparing computing value with measruing value of chloride ion concentr

21、ation under different m and at y=150 mm 图图 2.不同 m 和 下 y=150 mm 处混凝土中氯离子测量值和计算值比较 蒋韬 等 DOI:10.12677/mos.2023.125418 4593 建模与仿真 按照这种选取方法确定 m 和 的取值,图 2 中绘制了在 y=150 mm 处混凝土中氯离子测量值和计算值比较曲线。比如图 2(b)所示,m=0.05,=0.91 时,黑色曲线为 15 年后在 y=150 mm 处不同深度氯离子的浓度分布。不难看出,计算值在一定程度上较好地吻合了测量值。4.3.扩散预测扩散预测 根据模型(3)和数值格式(7),以

22、及上述方法确定的参数,就可以对氯离子的扩散情况加以预测。图3预测了两组参数分别在20年后和30年后氯离子浓度在构件内分布的等高线图,(a)和(b)为m=0,=0.89时的分布情况,(c)和(d)为 m=0.15,=0.96 时的分布情况。显然,随着时间的推移,氯离子扩散深度在不断地增加。氯离子含量为 0.25 的位置在 30 年时比 20 年时的情况距左边界更近,而且差别较为明显,前后十年混凝土构件的被腐蚀程度区别已经较为显著。Figure 3.Contour line distribution of predicted chloride ion diffusion in concrete 图

23、图 3.混凝土中氯离子扩散预测值的等高线分布 5.结论结论 本文建立了混凝土中变系数时间分数阶二维氯离子扩散模型(3),以及求解该模型的有限差分数值格蒋韬 等 DOI:10.12677/mos.2023.125418 4594 建模与仿真 式(7)。结果表明:时间依赖性常数 m 的增大会减缓扩散;增大分数阶导数的阶数 会加快扩散。数值预测说明:氯离子在混凝土的扩散作用十分明显,为保证建筑物的安全必须引起足够的重视。基金项目基金项目 北京建筑大学教育科学研究项目(Y2205)。参考文献参考文献 1 于丽波,蒋林华,储洪强,等.混凝土中结合氯离子研究综述J.科学技术与工程,2020,20(9):3

24、387-3393.2 Saetta,A.V.,Scotta,R.V.and Vitaliani,R.V.(1993)Analysis of Chloride Diffusion into Partially Saturated Concrete.ACI Materials Journal,90,441-451.https:/doi.org/10.14359/3874 3 Thomas,M.and Bamforth,P.B.(1999)Modelling Chloride Diffusion in Concrete:Effect of Fly Ash and Slag.Cement and Co

25、ncrete Research,29,487-495.https:/doi.org/10.1016/S0008-8846(98)00192-6 4 Chen,W.,Zhang,J.and Zhang,J.(2013)A Variable-Order Time-Fractional Derivative Model for Chloride Ions Sub-Diffusion in Concrete Structures.Fractional Calculus&Applied Analysis,16,76-92.https:/doi.org/10.2478/s13540-013-0006-y

26、5 Wei,S.,Chen,W.and Zhang,J.(2017)Time-Fractional Derivative Model for Chloride Ions Sub-Diffusion in Rein-forced Concrete.European Journal of Environmental and Civil Engineering,21,319-331.https:/doi.org/10.1080/19648189.2015.1116467 6 杨帅.非达西渗流和溶质输运的分数阶导数建模研究D:博士学位论文.北京:中国矿业大学(北京),2019.7 王一晗,白羽,张艳,等.混凝土中变扩散系数的时间分数阶氯离子扩散模型研究J.应用数学进展,2021,10(8):2853-2861.8 刘发旺,庄平辉,刘青霞.分数阶偏微分方程数值方法及其应用M.北京:科学出版社,2015:107-144.9 张伟,董志良,吕黄.混凝土氯离子二维扩散模型及工程验证J.水运工程,2009(6):35-39.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服