资源描述
[数列]模块小结
1.,数列是特殊的函数,;
2.等差数列的定义及性质
(1),;
(2);
(3)若,则;若,则;
(4)若是等差数列,则,仍成等差数列,公差为;
(5)若是等差数列,则也是等差数列,公差为;
(6)若是等差数列,则,.
3.等比数列的定义及性质
(1), ;
(2) ;
(3)若,则;若,则;
(4);
(5)若是等比数列,则,仍成等比数列(或为奇数),(当时,若为偶数,则不为等比数列).
4.数列求和的方法
(1)公式法:,
;
(2)错位相减法:适用于通项由等差和等比相应项的乘积构成的数列求和;
(3)裂项相消法:(为公差为的等差数列),
, ,
,;
(4)分组求和法;
(5)倒序相加法;
5.由递推公式求通项公式
(1),由得(叠加);
(2),由可得(迭乘法);
(3),由可得(同化);
(4),由构造等比数列求得;
(5),两边同除可以转化为(4)处理;
(6),由可以求得;
(7),两边取倒数可以转化;
(8),若,则可取求得;若,则可取求得;
(9),两边同除以可以求得;
(10),由可以求得;
(11)奇偶项,如; (12)周期数列.
◆数列习题(一)
1.如果等差数列中,,那么( )
A.14 B.21 C.28 D.35
解析:选C.
2.设为等比数列的前项和,已知,,则公比( )
A.3 B.4 C.5 D.6
解析:选B. 两式相减得,
3.设为等比数列的前项和,,则( )
A.11 B.5 C. D.
解析:选D. 由
4.已知是首项为1的等比数列,是的前项和,且,则数列 的前5项和为( )
A.或5 B.或5 C. D.
解析:选C.显然,,所以是首项为1,公比为的等比数列, 前5项和
5.设为等差数列的前项和,若,则 .
解析:填15. 依题设求出
6.已知数列满足,则的最小值为__________.
解析:填 由叠加法得,
构造函数,由单调性知,在上增,在上减,
当5或6时有最小值,又
7.已知数列满足:,
则 , .
解析:填1,0. 考查周期数列,
8.已知数列的前项和为,且
(1)证明:是等比数列;
(2)求数列的通项公式,并求出使得成立的最小正整数.
解析:(1)当时,;当时,,
又,是等比数列.
(2)由(1)知:
由得,最小正整数
9.已知是公差不为零的等差数列,,且成等比数列.
(1)求数列的通项公式; (2)求数列的前项和.
解析:(1)由题设知公差,依题意,,
(2)由(1)知,
10.已知是首项为19,公差为的等差数列,为的前项和.
(1)求通项及;
(2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
解析:(1)依题意,
(2),
◆数列习题(一)
1.如果等差数列中,,那么( )
A.14 B.21 C.28 D.35
2.设为等比数列的前项和,已知,,则公比( )
A.3 B.4 C.5 D.6
3.设为等比数列的前项和,,则( )
A.11 B.5 C. D.
4.已知是首项为1的等比数列,是的前项和,且,则数列 的前5项和为( )
A.或5 B.或5 C. D.
5.设为等差数列的前项和,若,则 .
6.已知数列满足则的最小值为__________.
7.已知数列满足:,
则 , .
8.已知数列的前项和为,且
(1)证明:是等比数列;
(2)求数列的通项公式,并求出使得成立的最小正整数.
9.已知是公差不为零的等差数列,,且成等比数列.
(1)求数列的通项公式; (2)求数列的前项和.
10.已知是首项为19,公差为的等差数列,为的前项和.
(1)求通项及;
(2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
◆数列习题(二)
1.已知各项均为正数的等比数列,,,则( )
A. B.7 C. 6 D.
解析:选A,
2.已知等比数列中,各项都是正数,且成等差数列,则( )
A. B. C. D.
解析:
3.设等差数列的前项和为,若,则当取最小值时,
等于( )
A.6 B.7 C.8 D.9
解析:.
4.已知等比数列满足,且,则当时,( )
A. B. C. D.
解析:
5.设等差数列的前项和为,若,则 .
解析:
6.等差数列的前项和为,且,则 .
解析:
7.设,则数列的通项公式 .
解析:
8.设为实数,首项为,公差为的等差数列的前项和为,满足.
(1)若,求及; (2)求的取值范围.
解析:(1),,
(2),
或
另解:看作关于的方程,解
9.已知等差数列满足:,的前项和为.
(1)求及; (2)令,求数列的前项和.
解析:(1)
(2),
10.设数列满足,.
(1)求数列的通项; (2)设,求数列的前项和.
解析:(1)
验证时也满足上式,
另解:题设条件可以看作数列的前项和,则
(2),,
,,
◆数列习题(二)
1.已知各项均为正数的等比数列,,,则( )
A. B.7 C. 6 D.
2.已知等比数列中,各项都是正数,且成等差数列,则( )
A. B. C. D.
3.设等差数列的前项和为,若,则当取最小值时,
等于( )
A.6 B.7 C.8 D.9
4.已知等比数列满足,且,则当时,( )
A. B. C. D.
5.设等差数列的前项和为,若,则 .
6.等差数列的前项和为,且,则 .
7.设,则数列的通项公式 .
8.设为实数,首项为,公差为的等差数列的前项和为,满足.
(1)若,求及; (2)求的取值范围.
9.已知等差数列满足:,的前项和为.
(1)求及; (2)令,求数列的前项和.
10.设数列满足,.
(1)求数列的通项; (2)设,求数列的前项和.
◆数列习题(三)
1.已知数列对任意的满足,且,则等于( )
A. B. C. D.
解析:选C.
2.已知等比数列中,则其前3项的和的取值范围是( )
A. B.
C. D.
解析:选D.
3.在数列中,, ,则( )
A. B. C. D.
解析:选A.
4.已知是等比数列,,则( )
A. B.
C. D.
解析:选C.
5.设为公比的等比数列,若和是方程的两根,
则 .
解析:或(舍),
6.设等差数列的前项和为,若,则的最大值为 .
解析:填4.
7.已知函数,等差数列的公差为,若,则 .
解析:填-6.
8.等差数列的前项和为.
(1)求数列的通项与前项和;
(2)设,求证:数列中任意不同的三项都不可能成为等比数列.
解析:(1),,故.
(2)由(1)得.
假设数列中存在三项(互不相等)成等比数列,
则.即.
,
.与矛盾.
所以数列中任意不同的三项都不可能成等比数列.
9.设数列的前项和为.已知,,.
(1)设,求数列的通项公式;
(2)若,,求的取值范围.
解析:(1)依题意,,即,
由此得.,.①
(2)由①知,,
当时,
,
,
当时,.
又.综上,所求的的取值范围是.
10.设数列的前项和为,已知
(1)证明:当时,是等比数列; (2)求的通项公式.
解析:由题意知,且,
两式相减得 即 ①
(1)当时,由①知
于是
又,所以是首项为1,公比为2的等比数列。
(2)当时,由(1)知,即
当时,由由①得
因此
得.
◆数列习题(三)
1.已知数列对任意的满足,且,则等于( )
A. B. C. D.
2.已知等比数列中,则其前3项的和的取值范围是( )
A. B.
C. D.
3.在数列中,, ,则( )
A. B. C. D.
4.已知是等比数列,,则( )
A. B.
C. D.
5.设为公比的等比数列,若和是方程的两根,
则 .
6.设等差数列的前项和为,若,则的最大值为 .
7.已知函数,等差数列的公差为,若,则 .
8.等差数列的前项和为.
(1)求数列的通项与前项和;
(2)设,求证:数列中任意不同的三项都不可能成为等比数列.
9.设数列的前项和为.已知,,.
(1)设,求数列的通项公式;
(2)若,,求的取值范围.
10.设数列的前项和为,已知
(1)证明:当时,是等比数列; (2)求的通项公式.
其中专业理论知识内容包括:保安理论知识、消防业务知识、职业道德、法律常识、保安礼仪、救护知识。作技能训练内容包括:岗位操作指引、勤务技能、消防技能、军事技能。
二.培训的及要求培训目的
安全生产目标责任书
为了进一步落实安全生产责任制,做到“责、权、利”相结合,根据我公司2015年度安全生产目标的内容,现与财务部签订如下安全生产目标:
一、目标值:
1、全年人身死亡事故为零,重伤事故为零,轻伤人数为零。
2、现金安全保管,不发生盗窃事故。
3、每月足额提取安全生产费用,保障安全生产投入资金的到位。
4、安全培训合格率为100%。
二、本单位安全工作上必须做到以下内容:
1、对本单位的安全生产负直接领导责任,必须模范遵守公司的各项安全管理制度,不发布与公司安全管理制度相抵触的指令,严格履行本人的安全职责,确保安全责任制在本单位全面落实,并全力支持安全工作。
2、保证公司各项安全管理制度和管理办法在本单位内全面实施,并自觉接受公司安全部门的监督和管理。
3、在确保安全的前提下组织生产,始终把安全工作放在首位,当“安全与交货期、质量”发生矛盾时,坚持安全第一的原则。
4、参加生产碰头会时,首先汇报本单位的安全生产情况和安全问题落实情况;在安排本单位生产任务时,必须安排安全工作内容,并写入记录。
5、在公司及政府的安全检查中杜绝各类违章现象。
6、组织本部门积极参加安全检查,做到有检查、有整改,记录全。
7、以身作则,不违章指挥、不违章操作。对发现的各类违章现象负有查禁的责任,同时要予以查处。
8、虚心接受员工提出的问题,杜绝不接受或盲目指挥;
9、发生事故,应立即报告主管领导,按照“四不放过”的原则召开事故分析会,提出整改措施和对责任者的处理意见,并填写事故登记表,严禁隐瞒不报或降低对责任者的处罚标准。
10、必须按规定对单位员工进行培训和新员工上岗教育;
11、严格执行公司安全生产十六项禁令,保证本单位所有人员不违章作业。
三、 安全奖惩:
1、对于全年实现安全目标的按照公司生产现场管理规定和工作说明书进行考核奖励;对于未实现安全目标的按照公司规定进行处罚。
2、每月接受主管领导指派人员对安全生产责任状的落
展开阅读全文