1、2023年人教版中学七7年级下册数学期末质量监测题一、选择题1实数4的算术平方根是()AB2CD162在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )ABCD3下列各点中,在第二象限的是( )ABCD4下列命题中,是假命题的是( )A两条直线被第三条直线所截,同位角相等B同旁内角互补,两直线平行C在同一平面内,过一点有且只有一条直线与已知直线垂直D如果两条直线都与第三条直线平行,那么这两条直线也互相平行5如图,已知直线、被直线所截,E是直线右边任意一点(点E不在直线,上),设,下列各式:,的度数可能是( )ABCD6下列各式中,正确的是( )A=4B=4CD7如图,ABC
2、D,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动其行走路线如图所示,第1次移动到,第2次移动到,第n次移动到,则的面积是( )ABCD九、填空题9已知,则ab为_.十、填空题10点(3,0)关于y轴对称的点的坐标是_十一、填空题11如图,ABC的角平分线CD、BE相交于F,A90,EGBC,且CGEG于G,下列结论:CEG2DCB;BFD45;ADCGCD;CA平分BCG其中正确的结论是_(填序号)十二、填空题12如图,
3、直线,相交于点E,若,则等于_十三、填空题13如图,在ABC中,将B、C按如图所示的方式折叠,点B、C均落于边BC上的点Q处,MN、EF为折痕,若A=82,则MQE= _十四、填空题14用表示一种运算,它的含义是:,如果,那么_十五、填空题15已知点A(0,0),|AB|=5,点B和点A在同一坐标轴上,那么点B的坐标是_十六、填空题16在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,第n次移动到An,则A2021的坐标是_十七、解答题17计算:(1) (2)十八、
4、解答题18(1)已知am3,an5,求a3m2n的值(2)已知xy,xy,求下列各式的值:x2yxy2;x2y2.十九、解答题19如图所示,已知1+2180,B3,请你判断DE和BC平行吗?说明理由(请根据下面的解答过程,在横线上补全过程和理由)解:DEBC理由如下:1+4180(平角的定义),1+2180( ),24( ) ( )3 ( )3B( ), ( )DEBC( )二十、解答题20如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各点的坐标;(2)将 三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1
5、(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形;(3)求出三角形ABC的面积二十一、解答题21阅读下面的文字,解答问题 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,但是由于12,所以的整数部分为1,将减去其整数部分1,差就是小数部分为(1)解答下列问题: (1)的整数部分是 ,小数部分是 ;(2)如果的小数部分为a,的整数部分为b,求a+b的值;(3)已知12+=x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22观察下图,每个小正方形的边长均为1,(1)图中阴影部分的面积是多少?边长是多少?(2)估计边长的值在哪两个整数之间二十
6、三、解答题23已知:ABCD点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,GFBCEH(1)如图1,求证:GFEH;(2)如图2,若GEH,FM平分AFG,EM平分GEC,试问M与之间有怎样的数量关系(用含的式子表示M)?请写出你的猜想,并加以证明二十四、解答题24如图1所示:点E为BC上一点,AD,ABCD(1)直接写出ACB与BED的数量关系;(2)如图2,ABCD,BG平分ABE,BG的反向延长线与EDF的平分线交于H点,若DEB比GHD大60,求DEB 的度数;(3)保持(2)中所求的DEB的度数不变,如图3,BM平分EBK,DN平分CDE,作BPDN,则
7、PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由(本题中的角均为大于0且小于180的角)二十五、解答题25在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.【参考答案】一、选择题1B解析:B【分析】根据算术平方根的定义,求一个非负数a的算术平方根,也就是求一个非负数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0【详解】解:22=4,4的算术平方根是
8、2故选B【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.2D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项
9、错误;故选:D【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向3B【分析】根据各象限内点的坐标特征对各选项分析判断即可得解【详解】解:A、点在x轴上,不符合题意;B、点在第二象限,符合题意;C、点在第三象限,不符合题意;D、点在第四象限,不符合题意;故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4A【分析】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解【详
10、解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;B. 同旁内角互补,两直线平行,真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;故选A【点睛】本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键5A【分析】根据点E有3种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可【详解】解:(1)如图,由ABCD,可得AOC=DCE1=,AOC=BAE1+AE1C,A
11、E1C=-(2)如图,过E2作AB平行线,则由ABCD,可得1=BAE2=,2=DCE2=,AE2C=+(3)当点E在CD的下方时,同理可得,AEC=-综上所述,AEC的度数可能为-,+,-即+,-,-,都成立故选A【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等6C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得【详解】A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,
12、然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,DFH=DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=5054+1,则可判断点A2021在x轴上,且OA2021=5052+1=1011,然后根据三角形面积公式【详解析:C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,
13、由于2021=5054+1,则可判断点A2021在x轴上,且OA2021=5052+1=1011,然后根据三角形面积公式【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),每四次一循环,每个循环,点向x轴的正方向前进2cm,OA4n=2n,2021=5054+1,点A2021在x轴上,且OA2021=5052+1=1011,OA2A2021的面积=11011=(cm2)故选:C【点睛】本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半九、填空题9-6【解析】试题分析:,解得=1,b=-7,故应
14、填为:-6.考点:非负数的性质:算术平方根;非负数的性质:绝对值点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数解析:-6【解析】试题分析:,解得=1,b=-7,故应填为:-6.考点:非负数的性质:算术平方根;非负数的性质:绝对值点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0十、填空题10(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特
15、点,直接用假设法设出相关点即可【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0)故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数十一、填空题11【分析】由EGBC,且CGEG于G,可得GECBCA,由CD平分BCA,可得GECBCA2DCB,可判定;由CD,BE平分BCA,ABC,根据外角性质可得B解析:【分析】由EGBC,且CGEG于G,可得GECBCA,由
16、CD平分BCA,可得GECBCA2DCB,可判定;由CD,BE平分BCA,ABC,根据外角性质可得BFDBCF+CBF45,可判定;根据同角的余角性质可得GCEABC,由角的和差GCDABC+ACD=ADC,可判定;由GCE+ACB90,可得GCE与ACB互余,可得CA平分BCG不正确,可判定【详解】解:EGBC,且CGEG于G,BCG+G180,G90,BCG180G90,GEBC,GECBCA,CD平分BCA,GECBCA2DCB,正确CD,BE平分BCA,ABCBFDBCF+CBF(BCA+ABC)45,正确GCE+ACB90,ABC+ACB90,GCEABC,GCDGCE+ACDABC
17、+ACD,ADCABC+BCD,ADCGCD,正确GCE+ACB90,GCE与ACB互余,CA平分BCG不正确,错误故答案为:【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键十二、填空题1280.【分析】先根据补角的定义求出BEC的度数,再由平行线的性质即可得出结论【详解】解:AEC=100,BEC=180-100=80DFAB,D=BE解析:80.【分析】先根据补角的定义求出BEC的度数,再由平行线的性质即可得出结论【详解】解:AEC=100,BEC=180-100=80DFAB,D=BEC=80故答案为:80.【点
18、睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等十三、填空题13【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质十四、填空题14【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的解析:【分析】
19、按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的值.十五、填空题15(5,0)或(5,0)或(0,5)或(0,5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案【详解】解解析:(5,0)或(5,0)或(0,5)或(0,5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案【详解】解:点A(0,0),点B和点A在同一
20、坐标轴上,点B在x轴上或在y轴上,|AB|=5,当点B在x轴上时,点B的坐标为(5,0)或(5,0),当点B在y轴上时,点B的坐标为(0,5)或(0,5);故答案为:(5,0)或(5,0)或(0,5)或(0,5)【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏十六、填空题16(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标
21、【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),202145051,所以A2021的坐标为(5052+1,0),则A2021的坐标是(1011,0)故答案为:(1011,0)【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般十七、解答题17(1);(2)5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案【详解】(1) =1+-2=(2)=3-4+解析:(1);(2)5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;
22、(2)直接利用算术平方根以及立方根的定义化简得出答案【详解】(1) =1+-2=(2)=3-4+1-5=-5【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),解析:(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),;(2),;,【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解
23、以及幂的乘方,熟记相关公式与运算法则是解答本题的关键十九、解答题19已知;同角的补角相等;AB;EF;内错角相等,两直线平行;ADE;两直线平行,内错角相等;已知;B;ADE;等量代换;同位角相等,两直线平行【分析】求出24,根据平行线的判定得出AB解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;ADE;两直线平行,内错角相等;已知;B;ADE;等量代换;同位角相等,两直线平行【分析】求出24,根据平行线的判定得出ABEF,根据平行线的性质得出3ADE,求出BADE,再根据平行线的判定推出即可【详解】解:DEBC,理由如下:1+4180(平角定义),1+2180(已知),24(
24、同角的补角相等),ABEF(内错角相等,两直线平行),3ADE(两直线平行,内错角相等),3B(已知),BADE(等量代换),DEBC(同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键二十、解答题20(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1
25、)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,ABC向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),平移后的A1B1C1如下图所示:;(3)【点睛】本题考查了作图-平移
26、变换:确定平移后图形的基本要素有两个:平移方向、平移距离作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形二十一、解答题21(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解【详解】解:(1)解析:(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解【详解】解:(1)的整数部分是3,小数部分是3;(2)23,3
27、4a=2,b=3a+b=2+3=1;(3)12,1312+14,x=13,y=1xy=13(1)=14xy的相反数是14【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数部分和小数部分是解题的关键二十二、解答题22(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可解析:(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等
28、于边长乘以边长,可以得到阴影正方形的边长;(2)根据,可以估算出边长的值在哪两个整数之间【详解】(1)由图可知,图中阴影正方形的面积是:55=17则阴影正方形的边长为:答:图中阴影部分的面积17,边长是(2)所以45边长的值在4与5之间;【点睛】本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算二十三、解答题23(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解析:(1)见解析;(2
29、),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解】(1)证明:,;(2)解:,理由如下:如图2,过点作,过点作,同理,平分,平分,由(1)知,【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键二十四、解答题24(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABE解析:(1) ;(2) ;(3)不发生变化,
30、理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABES推出,再根据ABTH,ABCD推出,最后根据比大得出的度数;(3)如图3,过点E作EQDN,根据得出的度数,根据条件再逐步求出的度数【详解】(1)如答图1所示,延长DE交AB于点FABCD,所以,又因为,所以,所以ACDF,所以因为,所以(2)如答图2所示,过点E作ESAB,过点H作HTAB设,因为ABCD,ABES,所以,所以,因为ABTH,ABCD,所以,所以,因为比大,所以,所以,所以,所以(3)不发生变化如答图3所示,过点E作EQDN设,由
31、(2)易知,所以,所以,所以,所以【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键二十五、解答题25(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分
32、线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;即可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分E
33、DB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/AC,根据平行线的性质可得EDB=C,FMD=GAC;即可得到FDM=NDE=C,所以FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;再由三角形外角的性质可得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AFD=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平
34、分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;AFD=180-(FDM +FMD)=180-70=110;故答案为115,110;AFD=90+B,理由如下:AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;AFD=180-(FDM +FMD)=180-(90-B)=90+B;(2)AFD=90-B,理由如下:如图,射线ED交AG于点M,AG平分BAC,DF平分EDB,CAG=BAC,NDE=EDB,FDM=NDE=EDB,DE/AC,EDB=C,FMD=GAC;FDM=NDE=C,FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;AFD=FDM +FMD=90-B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.