1、人教版八年级上学期压轴题模拟数学综合检测试卷答案1如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式(1)_;(2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断APN的形状并说明理由;(3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG试说明,CG与FG的数量关系2如图,在等边ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O(1)填空:BOC 度;(2)如图,以CO为边作等边OCF,AF与BO相等吗?
2、并说明理由;(3)如图,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由3在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标4如图,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点(1)若b210b250,判断AOB的形状,并说明理由;(2)如图,在(
3、1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=4,MN=7,求BN的长;(3)如图,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角OBF和等腰直角ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围5如图,在等边中,分别为,边上的点,(1)如图1,若点在边上,求证:;(2)如图2,连若,求证:;(3)如图3,是的中点,点在内,点,分别在,上,若,直接写出的度数(用含有的式子表示)6若整式A只含有字母x,且A的次数不超过3次,令,其
4、中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点例如,若整式,则a0,b2,c-5,d4,故A的关联点为(-5,-11)(1)若,试求出A的关联点坐标;(2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式(3)若整式Dx-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式7我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”(1)如下:平行四边形,矩形,菱形,正方形,一定是“菠菜四边形”的是
5、_(填序号);(2)如图1,四边形ABCD为“菠菜四边形”,且BADBCD90,ADAB,AECD于点E,若AE4,求四边形ABCD的面积;(3)如图2,四边形ABCD为“菠菜四边形”,且ABAD,记四边形ABCD,BOC,AOD的面积依次为S,若求证:ADBC;在的条件下,延长BA、CD交于点E,记BCm,DCn,求证:8如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且(1)直接写出的度数(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标(3)如图3,点C与点A关于y轴对称,点E为OC的中
6、点,连接BE,过点B作,且,连接AF交BC于点P,求的值【参考答案】2(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;解析:(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;(3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到
7、结论(1) 解得 (2) 是等腰三角形,理由如下:由点A(a,0)、点B(b,0)为x轴上两点,且可得,OA=OB OC垂直平分AB , 是等腰三角形(3),理由如下:如图,延长GF至点M,使FM=FG,连接CG、CM、AM F为AD的中点 在和中 垂直平分 ,BG平分 为等边三角形, 在和中 即是等腰三角形 为等边三角形 在 中, 【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键3(1)120;(2)相等,理由见解
8、析;(3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结解析:(1)120;(2)相等,理由见解析;(3)AO=2OG理由见解析【分析】(1)证明EABDBC(SAS),可得结论(2)结论:AF=BO,证明FCAOCB(SAS),可得结论(3)证明AFOOBR(SAS),推出OA=OR,可得结论【详解】解:(1)如图中,ABC是等边三角形,AB=BC,A=CBD=60,在EAB和DBC中,EABDBC(SAS),ABE=BCD,BOD=BCD+CBE=ABE+CBE=CBA=60,BOC=180-60=120故
9、答案为:120(2)相等理由:如图中,FCO,ACB都是等边三角形,CF=CO,CA=CB,FCO=ACB=60,FCA=OCB,在FCA和OCB中,FCAOCB(SAS),AF=BO(3)如图中,结论:AO=2OG理由:延长OG到R,使得GR=GO,连接CR,BR在CGO和BGR中,CGOBGR(SAS),CO=BR=OF,GCO=GBR,AF=BO,COBR,FCAOCB,AFC=BOC=120,CFO=COF=60,AFO=COF=60,AFCO,AFBR,AFO=RBO,在AFO和OBR中,AFOOBR(SAS),OA=OR,OR=2OG,OA=2OG【点睛】本题属于三角形综合题,考查
10、了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题4(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FHAO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2
11、,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解【详解】(1),(2)如图,过点F作FHAO于点HAFAEFHA=AOE=90, AFH=EAO又AF=AE,在和中 AH=EO=2,FH=AO=4OH=AO-AH=2F(-2,4) OA=BO, FH=BO在和中 HD=OD HD=OD=1D(-1
12、,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S, 等腰NQ=NO,NGPN, NSEG , , 点E为线段OB的中点 等腰NG=NP, QNG=ONP在和中 NGQ=NPO,GQ=PO,PO=PBPOE=PBE=45NPO=90NGQ=90QGR=45. 在和中 QR=OE在和中 QM=OM.NQ=NO,NMOQ等腰 在和中 NS=EM=4,MS=OE=2N(-6,2)【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练
13、掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解5(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)解析:(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)由OAOB,利用AAS得到AMOONB,用对应线段相等求长度;(3)如图,作EKy轴于K点,利用AAS得到AOBBKE,利用全等三角形对应边相等得到OABK,EKOB,再利用AAS得
14、到PBFPKE,寻找相等线段,并进行转化,求PB的长(1)解:结论:OAB是等腰直角三角形;理由如下:b210b250,即,解得:,A(5,0),B(0,5),OAOB5,AOB是等腰直角三角形(2)解:AMOQ,BNOQ,在AMO与ONB中,AMOONB(AAS),AMON4,BNOM,MN7,OM3,BNOM3(3)解:结论:PB的长为定值理由如下,作EKy轴于K点,如图所示:ABE为等腰直角三角形,ABBE,ABE90,EBKABO90,EBKBEK90,ABOBEK,在AOB和BKE中,AOBBKE(AAS),OABK,EKOB,OBF为等腰直角三角形,OBBF,EKBF,在EKP和F
15、BP中,PBFPKE(AAS),PKPB,PBBKOA【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键6(1)见解析(2)见解析(3)【分析】(1)连接DF,根据“有一个角是60的等腰三角形是等边三角形”可判断DEF是等边三角形,则DF=EF,又ABC是等边三角形,根据三角形内角和可解析:(1)见解析(2)见解析(3)【分析】(1)连接DF,根据“有一个角是60的等腰三角形是等边三角形”可判断DEF是等边三角形,则DF=EF,又ABC是等边三角形,根据三角形内角和可得出,AFD=FEC,所以ADFC
16、FE(AAS),则AD=CF;(2)过点F作JKAC交AB于点J,交BC于点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则BJK和CPI是等边三角形,BDEJFDKEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得CPI为等边三角形,由FCB=30可得CF平分PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE;(3)延长MO到点G,使OG=OM,连接NG,BG,NM,作ACQ=ABN,且使CQ=BN,连接MQ,AQ,先得到BOGCOM(SAS),再得到ACQABN(
17、SAS)和BNGCQM(SAS),所以NAM=MAQ=CAM+CAQ=CAM+BAN,所以CAM+BAN=30,则CAM=,所以BAN=30-(1)证明:如图,连接,是等边三角形,是等边三角形,;(2)证明:如图,过点作交于点,交于点,过点作交于,交于点,连接,和是等边三角形,是等边三角形,由(1)中结论可知,四边形是平行四边形,为等边三角形,平分,是等边三角形,即;(3)如图,延长到点,使,连接,作,且使,连接,是等边三角形,又,【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出
18、全等三角形是解题关键7(1)(2)(3)或【分析】(1)根据整式得出,根据关联点的定义得出,即可得出的关联点坐标;(2)根据题意得出中的次数为次,设,计算出,进而表达出,的值,再根据的关解析:(1)(2)(3)或【分析】(1)根据整式得出,根据关联点的定义得出,即可得出的关联点坐标;(2)根据题意得出中的次数为次,设,计算出,进而表达出,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可;(3)设,根据题意求出,进而表达出,的值,再根据的关联点为,列出关于,的等式,解出、的值即可(1)解:(1),的关联点坐标为:,故笞案为:;(2)整式是只含有字母的整式,整式是与的乘积,是二次多项式
19、,且的次数不能超过次,中的次数为次,设 ,整式的关联点为,解得:,;(3)根据题意:设, ,整式 的关联点为,把代入得: ,解得: , 或,或【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键8(1) (2)16(3)见解析;见解析【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,解析:(1) (2)16(3)见解析;见解析【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,求
20、出,求出,代入求解即可;(3)记面积为,则,根据已知条件可得,进而可得,得出 由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论(1)根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形,故答案为:(2)如图,过A作,交CB的延长线于F, 四边形AFCE是矩形则 四边形AFCE是正方形, 即四边形ABCD的面积为16(3)记,如图:作, AMAD四边形AMND为平行四边形ADMNADBCADBC又ADABBD平分如图:又【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键
21、9(1);(2);(3)【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;(2)连接BM,进而证明解析:(1);(2);(3)【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;(2)连接BM,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得(3)过点F作轴交CB的延长线于点N,证明,设,则等边三角形ABC的边长是4a,进而计算可得,即可求得的值【详解】(1)点在x轴负半轴上,如答图1,在x轴的正半轴上取点C,使,连接BC,又,是等边三角形,;(2)如答图2,连接BM,是等边三角形,D为AB的中点,在和中,即,为等边三角形,;(3)如答图3,过点F作轴交CB的延长线于点N,则,在和中,又E是OC的中点,设,等边三角形ABC的边长是4a,在和中,又,【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键