1、人教版八年级上学期压轴题模拟数学检测试卷附答案1如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式(1)_;(2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断APN的形状并说明理由;(3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG试说明,CG与FG的数量关系2如图1,在平面直角坐标系中,点,且,满足,连接,交轴于点(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:3在平面直角坐标系中,
2、点A(a,0),点B(0,b),已知a,b满足(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标4如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b286+160(1)求a,b的值;(2)如图1,c为y轴负半轴上一点,连CA,过点C作CDCA,使CDCA,连BD求证:CBD45;(3)如图2,若有一等腰RtBMN,BMN90,连AN,取AN中点P
3、,连PM、PO试探究PM和PO的关系5如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作DBO=ABO,点H为y轴上的点,CAH=BAO,BD交y轴于点E,直线DO交AC于点C(1)证明:ABE为等边三角形;(2)若CDAB于点F,求线段CD的长;(3)动点P从A出发,沿AOB路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿BOA路线运动,速度为2个单位长度每秒,到A点处停止运动两点同时开始运动,都要到达相应的终点才能停止在某时刻,作PMCD于点M,QNCD于点N问两动点运动多长时间时OPM与OQN全等?6背景角的平分线是常见的几何模型,利用轴对称构造三
4、角形全等可解决有关问题问题在四边形ABDE中,C是BD边的中点(1)如图1,若AC平分BAE,ACE90,则线段AE、AB、DE的长度满足的数量关系为_;(直接写出答案)(2)如图2,AC平分BAE,EC平分AED,若ACE120,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图3,若ACE120,AB4,DE9,BD12,则AE的最大值是_(直接写出答案)7【阅读材料】小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形
5、中,小明发现若BAC=DAE,AB=AC,AD=AE,则ABDACE【材料理解】(1)在图1中证明小明的发现【深入探究】(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:BD=EC;BOC=60;AOE=60,其中正确的有_(将所有正确的序号填在横线上)【延伸应用】(3)如图3,在四边形ABCD中,BD=CD,AB=BE,ABE=BDC=60,试探究A与BED的数量关系,并证明8如图,在等边ABC中,线段AM为BC边上的中线动点D在直线AM上时,以CD为一边在CD的下方作等边CDE,连结BE(1)求CAM的度数;(2)若点D在线段AM上时,求证:ADCBEC
6、;(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB是否为定值?并说明理由【参考答案】2(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;解析:(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;(3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性
7、质得出,最后证明 为等边三角形,即可得到结论(1) 解得 (2) 是等腰三角形,理由如下:由点A(a,0)、点B(b,0)为x轴上两点,且可得,OA=OB OC垂直平分AB , 是等腰三角形(3),理由如下:如图,延长GF至点M,使FM=FG,连接CG、CM、AM F为AD的中点 在和中 垂直平分 ,BG平分 为等边三角形, 在和中 即是等腰三角形 为等边三角形 在 中, 【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的
8、关键3(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直解析:(1);(2)证明见解析;(3)证明见解析【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证ABPBCQ,可得AB=BC,BAP=CBQ,可证ABC是等腰直角三角形,可得BAC=45,可得结论;(3)由“AAS”可证ATOEAG,可得AT=AE,OT=AG,由“SAS”可证TADEAD,可得TD=ED,TDA=EDA,由平行线的性质可得EFD=EDF,可得EF=ED,即可得结论【详解】解:
9、(1)a2-2ab+2b2-16b+64=0,(a-b)2+(b-8)2=0,a=b=8,b-6=2,点C(2,-8);(2)a=b=8,点A(0,6),点B(8,0),点C(2,-8),AO=6,OB=8,如图1,过点B作PQx轴,过点A作APPQ,交PQ于点P,过点C作CQPQ,交PQ于点Q,四边形AOBP是矩形,AO=BP=6,AP=OB=8,点B(8,0),点C(2-8),CQ=6,BQ=8,AP=BQ,CQ=BP,又APB=BCQABPBCQ(SAS),AB=BC,BAP=CBQ,BAP+ABP=90,ABP+CBQ=90,ABC=90,ABC是等腰直角三角形,BAC=45,OAD+
10、ADO=OAD+BAC+ABO=90,OAC+ABO=45;(3)如图2,过点A作ATAB,交x轴于T,连接ED,TAE=90=AGE,ATO+TAO=90=TAO+GAE=GAE+AEG,ATO=GAE,TAO=AEG,又EG=AO,ATOEAG(AAS),AT=AE,OT=AG,BAC=45,TAD=EAD=45,又AD=AD,TADEAD(SAS),TD=ED,TDA=EDA,EGAG,EGOB,EFD=TDA,EFD=EDF,EF=ED,EF=ED=TD=OT+OD=AG+OD,EF=AG+OD【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题
11、的关键4(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FHAO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQON交OM的
12、延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解【详解】(1),(2)如图,过点F作FHAO于点HAFAEFHA=AOE=90, AFH=EAO又AF=AE,在和中 AH=EO=2,FH=AO=4OH=AO-AH=2F(-2,4) OA=BO, FH=BO在和中 HD=OD HD=OD=1D(-1,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQON交OM的延长线于点Q,NGP
13、N交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S, 等腰NQ=NO,NGPN, NSEG , , 点E为线段OB的中点 等腰NG=NP, QNG=ONP在和中 NGQ=NPO,GQ=PO,PO=PBPOE=PBE=45NPO=90NGQ=90QGR=45. 在和中 QR=OE在和中 QM=OM.NQ=NO,NMOQ等腰 在和中 NS=EM=4,MS=OE=2N(-6,2)【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解5(1)a4,b4;(2)见解析;(3)
14、MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可解析:(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;(2)如图1(见解析),作于E易证,由三角形全等的性质得,再证明是等腰直角三角形即可;(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C证出和,再利用全等三角形的性质证明是等腰直角三角形即可.【详解】(1)由绝对值的非负性和平方
15、数的非负性得:解得:;(2)如图1,作于E是等腰直角三角形,;(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C在四边形MCOB中,是等腰直角三角形是等腰直角三角形.【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.6(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【分析】(1)先证AOBEOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知ABE解析:(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【
16、分析】(1)先证AOBEOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知ABE=BEA=EAB=60,进而得出AOF=30,利用含30角的直角三角形的性质得到AF、OF的长再证明ACF=AOF=30,D=30,同理得出CF、DF的长,进而可得出结论(3)设运动的时间为t秒然后分四种情况讨论:当点P、Q分别在y轴、x轴上时,;当点P、Q都在y轴上时,;当点P在x轴上,Q在y轴且二者都没有提前停止时,;当点P在x轴上,Q在y轴且点Q提前停止时,列方程求解即可【详解】(1)在AOB与EOB中,AOB=EOB,OB=OB,EBO=ABO,AOBEOB (ASA),AO=EO=3,BE=AB
17、=6,AE=BE=AB=6,ABE为等边三角形(2)由(1)知ABE=BEA=EAB=60CDAB,AOF=30,AF=在RtAOF中,OF=CAH=BAO =60,CAF =60,ACF=AOF=30,AO=AC又CDAB,CF=AB=6,AF=,BF=在RtBDF中,DBF =60,D=30,BD=由勾股定理得:DF=,CD=(3)设运动的时间为t秒当点P、Q分别在y轴、x轴上时,PO=QO得:,解得:(秒);当点P、Q都在y轴上时,PO=QO得:,解得(秒);当点P在x轴上,Q在y轴且二者都没有提前停止时,则PO=QO,得:,解得:,不合题意,舍去当点P在x轴上,Q在y轴且点Q提前停止时
18、,有,解得:(秒)综上所述:当两动点运动时间为、6秒时,OPM与OQN全等【点睛】本题考查了全等三角形的判定、含30角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性质正确分类讨论是解题的关键7(1)AE=AB+DE(2)AE=AB+DE+BD(3)【分析】(1)在AE上取一点F,使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出解析:(1)AE=AB+DE(2)AE=AB+DE+BD(3)【分析】(1)在AE上取一点F,使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出CEFCED就可以得出结论;(3)在AE上
19、取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG可以求得CF=CG,CFG是等边三角形,就有FG=CG=BD,进而得出结论;(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG根据两点之间线段最短解决问题即可(1)AE=AB+DE;理由:在AE上取一点F,使AF=AB,AC平分BAE,BAC=FAC在ACB和ACF中,ACBACF(SAS),BC=FC,ACB=ACFC是BD边的中点BC=CD,CF=CDACE=90,ACB+DCE=90,ACF+ECF=90ECF=ECD在CEF和CED中,CEFCED(SAS),EF=EDAE=AF+E
20、F,AE=AB+DE,故答案为:AE=AB+DE;(2)猜想:AE=AB+DE+BD证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CGC是BD边的中点,CB=CD=BDAC平分BAE,BAC=FAC在ACB和ACF中, ACBACF(SAS),CF=CB,BCA=FCA同理可证:CD=CG,DCE=GCECB=CD,CG=CFACE=120,BCA+DCE=180-120=60FCA+GCE=60FCG=60FGC是等边三角形FG=FC=BDAE=AF+EG+FGAE=AB+DE+BD(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,E
21、G,FG,如图所示:C是BD边的中点,CB=CD=BD=,ACBACF(SAS),CF=CB=,BCA=FCA,同理可证:CD=CG=,DCE=GCE,CB=CD,CG=CF,ACE=120,BCA+DCE=180-120=60,FCA+GCE=60,FCG=60,FGC是等边三角形,FC=CG=FG=,AEAF+FG+EG,当A、F、G、E共线时AE的值最大,最大值为故答案为:【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键8(1)见解析;(2);(3),证明见解析【分析】(1)利用等式的
22、性质得出BADCAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BDCE,再利用对顶角和三解析:(1)见解析;(2);(3),证明见解析【分析】(1)利用等式的性质得出BADCAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BDCE,再利用对顶角和三角形的内角和定理判断出BOC60,再判断出BCFACO,得出AOC120,进而得出AOE60,再判断出BFCF,进而判断出OBC30,即可得出结论;(3)先判断出BDC是等边三角形,得出BDBC,DBC60,进而判断出ABDEBC(SAS),由全等三角形的性质即可得出结论【详解】(1)证明:BACDAE,BACCAD
23、DAECAD,BADCAE,在ABD和ACE中,ABDACE(SAS);(2)解:如图2,ABC和ADE是等边三角形,ABAC,ADAE,BACDAE60,BADCAE,在ABD和ACE中,ABDACE(SAS),BDCE,正确,ADBAEC,记AD与CE的交点为G,AGEDGO,180ADBDGO180AECAGE,DOEDAE60,BOC60,正确,在OB上取一点F,使OFOC,连接CF,OCF是等边三角形,CFOC,OFCOCF60ACB,BCFACO,ABAC,BCFACO(SAS),AOCBFC180OFC120,AOE180AOC60,正确,连接AF,要使OCOE,则有OCCE,B
24、DCE,CFOFBD,OFBFOD,BFCF,OBCBCF,OBCBCFOFC60,OBC30,而没办法判断OBC大于30度,所以,不一定正确,即:正确的有,故答案为;(3)ABED180如图3,证明:BDC60,BDCD,BDC是等边三角形,BDBC,DBC60,ABC60DBC,ABDCBE,ABBE,ABDEBC(SAS),BECA,BEDBEC180,ABED180【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解本题的关键9(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出
25、结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3解析:(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论【详解】解:(1)是等边三角形,线段为边上的中线,故答案为:30;(2)与都是等边三角形,在和中,;(3)是定值,理由如下:当点在线段上时,如图1,由(2)可知,则,又,是等边三角形,线段为边上的中线,平分,即,当点在线段的延长线上时,如图2,与都是等边三角形,在和中,同理可得:,当点在线段的延长线上时,如图3,与都是等边三角形,在和中,同理可得:,综上,当动点在直线上时,是定值,【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键