1、人教版八年级上学期压轴题模拟数学质量检测试卷带答案1如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接(1)如图,当点D移动到线段的中点时,与的长度关系是:_(2)如图,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论(3)如图,当点D移动到线段的延长线上,并且时,求的度数2(初步探索)(1)如图:在四边形中,、分别是、上的点,且,探究图中、之间的数量关系(1)(1)小明同学探究此问题的方法是:延长到点,使连接,先证明,再证明,可得出结论,他的结论应是_;(2)(灵活运用)(2)如图2,若
2、在四边形中,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;3在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点(1)当2a2+4ab+4b2+2a+10时,求A,B的坐标;(2)当a+b0时,如图1,若D与P关于y轴对称,PEDB并交DB延长线于E,交AB的延长线于F,求证:PBPF;如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CPAQ时,求APB的大小4(1)模型:如图1,在中,平分,求证:(2)模型应用:如图2,平分交的延长线于点,求证:(3)类比应用:如图3,平分,求证:5完全
3、平方公式:适当的变形,可以解决很多的数学问题例如:若,求的值解:因为所以所以得根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)若,则 ;若则 ;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积6如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作DBO=ABO,点H为y轴上的点,CAH=BAO,BD交y轴于点E,直线DO交AC于点C(1)证明:ABE为等边三角形;(2)若CDAB于点F,求线段CD的长;(3)动点P从A出发,沿AOB路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿BOA路线运动,速
4、度为2个单位长度每秒,到A点处停止运动两点同时开始运动,都要到达相应的终点才能停止在某时刻,作PMCD于点M,QNCD于点N问两动点运动多长时间时OPM与OQN全等?7ABC、DPC都是等边三角形(1)如图1,求证:APBD;(2)如图2,点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求证:BPBD;判断PC与PA的数量关系并证明8如图1,在ABC中,AEBC于E,AEBE,D是AE上一点,且DECE,连接BD,CD(1)判断与的位置关系和数量关系,并证明;(2)如图2,若将DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;(3)如
5、图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数【参考答案】2(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可解析:(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上
6、截取,如图(见详解),用同样的方法证明,再根据EDDC,证出为等腰直角三角形,即可求出DEC的度数(1)解:,证明过程如下:由题意可知, D为AB的中点,为等边三角形,(2)解:,理由如下:在射线AB上截取,连接EF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,DE与DC之间的数量关系是(3)如图,在射线CB上截取,连接DF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,EDDC,为等腰直角三角形,【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键3(1)(初步探索)结论:BAEFADE
7、AF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=D解析:(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF(1)解:B
8、AEFADEAF理由:如图1,延长FD到点G,使DGBE,连接AG,DGBE,ABEADG,BAEDAG,AEAG,EF=BE+FD,DGBE,且AEAG,AFAF,AEFAGF,EAFGAFDAGDAFBAEDAF故答案为:BAEFADEAF;(2)如图2,延长FD到点G,使DGBE,连接AG, BADF180,ADGADF180,BADG,又ABAD,ABEADG(SAS),BAEDAG,AEAG,EFBEFDDGFDGF,AFAF,AEFAGF(SSS),EAFGAFDAGDAFBAEDAF【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据
9、全等三角形的对应角相等进行推导变形解题时注意:同角的补角相等4(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴解析:(1);(2)见解析;APB22.5【分析】(1)利用非负数的性质求解即可;(2)想办法证明PBFF,可得结论;如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H,可得等腰直角BQF,证明FQHQBO(AAS),再证明FQFP即可解决问题【详解】解:(1)2a2+4ab+4b2+2a+10,(a+2b)2+(a+1)20,(a+2b)20 ,(a+1)20
10、,a+2b0,a+10,a1,b,A(1,0),B(0,)(2)证明:如图1中,a+b0,ab,OAOB,又AOB90,BAOABO45,D与P关于y轴对称,BDBP,BDPBPD,设BDPBPD,则PBFBAP+BPA45+,PEDB,BEF90,F90EBF,又EBFABDBAOBDP45,F45+,PBFF,PBPF解:如图2中,过点Q作QFQB交PB于F,过点F作FHx轴于H可得等腰直角BQF,BOQBQFFHQ90,BQO+FQH90,FQH+QFH90,BQOQFH,QBQF,FQHQBO(AAS),HQOBOA,HOAQPC,PHOCOBQH,FQFP, 又BFQ45,APB22
11、.5【点睛】本题考查完全平方公式、实数的非负性、全等三角形的判定与性质、等腰直角三角形的判定与性质,解题的关键是综合运用相关知识解题5(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而解析:(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而可求出,即可求解;(3)延长BE至M,使EM=DC,连接AM,根据题意可证ADCAEM,故而得出AE
12、为BAM的角平分线,即,即可得出答案;【详解】解:(1)AD平分BAC,DEAB,DEAC,DE=DF, ,:=AB:AC;(2)如图,在AB上取点E,使得AE=AC,连接DE又 AD平分CAE, CAD=DAE,在ACD和AED中, ,ACDAED(SAS),CD=DE且ADC=ADE, , ,AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM, D+AEB=180,又AEB+AEM=180,D=AEM,在ADC与AEM中,ADCAEM(SAS),DAC=EAM=BAE,AC=AM,AE为BAM的角平分线,故 ,BE:CD=AB:AC;【点睛】本题考查了全等三角形的判定与
13、性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;6(1)12;(2)6;17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)两边平方,再将代入计算;两边平方,再将代入计算;(3)由题意可得:,两边平方从而解析:(1)12;(2)6;17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)两边平方,再将代入计算;两边平方,再将代入计算;(3)由题意可得:,两边平方从而得到,即可算出结果【详解】解:(1);又;,(2),;又,由,;又,(3)由题意可得,;,;,;图中阴影部分面积为直角三角形面积,【点睛】本题主要考查了完全平方公式的适当变形
14、灵活应用,(1)可直接应用公式变形解决问题(2)小题都需要根据题意得出两个因式和或者差的结果,合并同类项得,是解决本题的关键,再根据完全平方公式变形应用得出答案(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案7(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【分析】(1)先证AOBEOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知ABE解析:(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【分析】(1)先证AOBEOB得到AE=BE=AB,
15、从而可以得出结论;(2)由(1)知ABE=BEA=EAB=60,进而得出AOF=30,利用含30角的直角三角形的性质得到AF、OF的长再证明ACF=AOF=30,D=30,同理得出CF、DF的长,进而可得出结论(3)设运动的时间为t秒然后分四种情况讨论:当点P、Q分别在y轴、x轴上时,;当点P、Q都在y轴上时,;当点P在x轴上,Q在y轴且二者都没有提前停止时,;当点P在x轴上,Q在y轴且点Q提前停止时,列方程求解即可【详解】(1)在AOB与EOB中,AOB=EOB,OB=OB,EBO=ABO,AOBEOB (ASA),AO=EO=3,BE=AB=6,AE=BE=AB=6,ABE为等边三角形(2
16、)由(1)知ABE=BEA=EAB=60CDAB,AOF=30,AF=在RtAOF中,OF=CAH=BAO =60,CAF =60,ACF=AOF=30,AO=AC又CDAB,CF=AB=6,AF=,BF=在RtBDF中,DBF =60,D=30,BD=由勾股定理得:DF=,CD=(3)设运动的时间为t秒当点P、Q分别在y轴、x轴上时,PO=QO得:,解得:(秒);当点P、Q都在y轴上时,PO=QO得:,解得(秒);当点P在x轴上,Q在y轴且二者都没有提前停止时,则PO=QO,得:,解得:,不合题意,舍去当点P在x轴上,Q在y轴且点Q提前停止时,有,解得:(秒)综上所述:当两动点运动时间为、6
17、秒时,OPM与OQN全等【点睛】本题考查了全等三角形的判定、含30角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性质正确分类讨论是解题的关键8(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接C解析:(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(
18、SSS),可得结论;结论:PC=2PA想办法证明DPB=30,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,CB=CA,CD=CP,ACB=DCP=60,BCD=ACP,在BCD和ACP中,BCDACP(SAS),BD=AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CKAPPM,APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=
19、CPK=x,则BDP=90-x,APC=CDB,90+x=60+90-x,x=30,DPB=30,PBD=90,PD=2BD,PC=PD,BD=PA,PC=2PA【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题9(1), ;(2), ;(3)【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出,再判断出,最后计算即可【详解】解:(1)与的位置关解析:(1), ;(2), ;(3)【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出,再判断出,最后计算即可【详解】解:(1)与的位置关系是:,数量关系是理由如下:如图1,延长交于点于,AEBC,(2)与的位置关系是:,数量关系是如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G,即,AEBC,又,(3)如图,线段AC与线段BD交于点F,和是等边三角形,在和中,与的夹角度数为【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断