1、2022年人教版中学七7年级下册数学期末综合复习(及答案)一、选择题1如图,直线,b被直线c所截,下列说法正确的是( )A2与3是同旁内角B1与4是同位角C与是同旁内角D1与2是内错角2春意盎然,在婺外校园里下列哪种运动不属于平移( )A树枝随着春风摇曳B值日学生拉动可移动黑板C行政楼电梯的升降D晚自修后学生两列队伍整齐排列笔直前行3在直角坐标系中内点在第三象限,那么点在( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是()A同位角相等,两直线平行B三角形的一个外角等于与它不相邻的两个内角的和C平行于同一条直线的两条直线平行D平面内,到一个角两边距离相等的点在这个角的平分线上
2、5如果,直线,则等于( )ABCD6如果1.333,2.872,那么约等于( )A28.72B0.2872C13.3D0.13337两个直角三角板如图摆放,其中,与交于点M,若,则的大小为( )A95B105C115D1258如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A(1,1)B(1,1)C(2,1)D(2,0)九、填空题9若|y+6|+(x2)2=0,则y x=_十、填空题10已
3、知点在第四象限,则点A关于y轴对称的坐标是_.十一、填空题11如图,在中,.三角形的外角和的角平分线交于点E,则_度.十二、填空题12如图,设,那么,的关系式_十三、填空题13如图为一张纸片沿直线折成的V字形图案,已知图中,则_十四、填空题14材料:一般地,n个相同因数a相乘:记为如,此时3叫做以2为底的8的对数,记为(即)那么_,_十五、填空题15如图,在平面直角坐标系中,已知点,连接,交y轴于B,且,则点B坐标为_十六、填空题16如图,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动即(0,0)(
4、0,1) (1,1) (1,0),每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是_十七、解答题17计算: (1)3-(-5)+(-6) (2)十八、解答题18求下列各式中的值:(1);(2)十九、解答题19如图,三角形中,点,分别是,上的点,且,(1)求证:;(完成以下填空)证明:(已知)(_),又(已知)(等量代换),(_)(2)与的平分线交于点,交于点,若,则_;已知,求(用含的式子表示)二十、解答题20在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(2,1),(1
5、,1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形ABC,请在图中画出平移后的三角形ABC,并分别写出点A,B,C的坐标二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用1来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为,即23,所以的整数部分为2,小数部分为(2)请解答:(1)的整数部分是 ,小数部分是 ;(2)如果的小数部分为a,的整数部分为b,求a+b的值二十二、解答题22张华想用一块面积为
6、400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值二十四、解答题24已知,将一副三角板中的两块直角三角板如图1放置,(1)若三角板如图1摆放时,则_
7、,_(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数二十五、解答题25【问题探究】如图1,DFCE,PCE=,PDF=,猜想DPC与、之间有何数量关系?并说明理由;【问题迁移】如图2,DFCE,点P在三角板AB边上滑动,PCE=,PDF=.(1)当点P在E、F两点之间运动时,如果=30,=40,则DPC= .(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出DPC与、之间的数量关系,并说明理由(图1) (图
8、2)【参考答案】一、选择题1A解析:A【分析】同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形依据同位角、内错角以及同旁内角的特征进行判断即可【详解】解:A2与3是同旁内角,故说法正确,符合题意;B1与4不是同位角,是对顶角,故说法错误,不合题意;C2与4不是同旁内角,是内错角,故说法错误,不合题意;D1与2不是内错角,是同位角,故说法错误,不合题意;故选:A【点睛】本题主要考查了同位角、内错角以及同旁内角的特征,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边
9、在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线2A【分析】根据平移的特点可得答案【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直解析:A【分析】根据平移的特点可得答案【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直前行是平移运动;故选A【点睛】此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离
10、相等3D【分析】根据第三象限内点的坐标符号判断出a、b,再根据各象限内点的坐标特征解答【详解】解:点M(a,b)在第三象限,a0,b0,-a0,那么点N(-a,b)所在的象限是:第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项【详解】解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;B、三角形的一个外角等于与它不相邻的两个内角的和,
11、正确,是真命题,不符合题意;C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;故选:D【点睛】考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大5B【分析】先求DFE的度数,再利用平角的定义计算求解即可【详解】ABCD,DFE=A=65,EFC=180-DFE =115,故选B【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键6C【分析】根据立方根的变化特点和给出的数据进行解答即可【详解】解:1.333,故选:
12、C【点睛】本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍7B【分析】根据BCEF,E=45可以得到EDC=E=45,然后根据C=30,C+MDC+DMC=180,即可求解.【详解】解:BCEF,E=45EDC=E=45,C=30,C+MDC+DMC=180,DMC=180-C-MDC=105,故选B.【点睛】本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,可得到物体甲和物
13、体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第解析:A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解【详解】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:第一次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为 ,此时在BC边相遇,即第一次相遇点为(-1,1);第二次相遇物体甲与物体乙运动的路程和为
14、,物体甲运动的路程为,物体乙运动的路程为,在DE边相遇,即第二次相遇点为(-1,-1);第三次相遇物体甲与物体乙运动的路程和为,物体甲运动的路程为,物体乙运动的路程为,在A点相遇,即第三次相遇点为(2,0);此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1)故选:A【点睛】本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点九、填空题936【解析】由题意得,y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36
15、故答案是:36解析:36【解析】由题意得,y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36故答案是:36十、填空题10【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,解析:【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,所以点A关于y轴对称点坐标为.故答案为.【点睛】本题考查点的坐标的意义和对称的特点关键是
16、掌握点的坐标的变化规律十一、填空题11【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,解析:【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,1+2=180B=140,DAC+ACF=36012=220,AE和CE分别是和的角平分线,.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想
17、是解题的关键.十二、填空题12【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】本题考查了平解析:【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;十三、填空题1370【分析】根据1+22=180求解即可【详解】解:1+22=180,2=70故答案为:70【点睛】本题考查了折叠的性质,角的和差计算,由图得出1+2解析:70【分析】根据1+22=180求解即可【详解
18、】解:1+22=180,2=70故答案为:70【点睛】本题考查了折叠的性质,角的和差计算,由图得出1+22=180是解答本题的关键十四、填空题143; 【分析】由可求出,由,可分别求出,继而可计算出结果【详解】解:(1)由题意可知:,则,(2)由题意可知:,则,故答案为:3;【点睛】本题主解析:3; 【分析】由可求出,由,可分别求出,继而可计算出结果【详解】解:(1)由题意可知:,则,(2)由题意可知:,则,故答案为:3;【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键十五、填空题15【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面
19、积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,解析:【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,点的坐标为,故答案是:【点睛】本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答十六、填空题16(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步向下跳解析:(5,6)【分析】根据题意判断出
20、跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步向下跳动;跳到(2,2)位置用时23=6秒,下一步向左跳动;跳到(3,3)位置用时34=12秒,下一步向下跳动;跳到(4,4)位置用时45=20秒,下一步向左跳动;由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒,当n为奇数时,下一步向下跳动;当n为偶数时,下一步向左跳动;第67=42秒时跳蚤位于(6,6)位置,下一步向左跳动,则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6),故答案为:(5,6)【点睛】此题考查了点的坐标问题,
21、解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间十七、解答题17(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6=2(2)解:(-1)2- =1-4 =1-2=-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键十八、解答题18(1)
22、;(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,解析:(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,开方得,;(2)移项得,合并同类项得,开立方得,【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键十九、解答题19(1)两直线平行,同位角相等;同位角相等,两直线平行;(2);【分析】(1)根据平行线的判定及性质即可
23、证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和定理即可解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2);【分析】(1)根据平行线的判定及性质即可证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和定理即可计算出;根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出【详解】解:证明(1)证;证明:(已知),(两直线平行,同位角相等),又(已知)(等量代换),(同位角相等,两直线平行),故答案是:两直线平行,同位角相等;同位角相等,两直线平行(2)与的平分线交于点,交于点,且,由(1)知,在中,故答案是:;,由(1)知
24、,在中,故答案是:【点睛】本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解二十、解答题20(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(2)分别作出A,B,C即可解决问题【详
25、解】解:(1)平面直角坐标系如图所示:B(0,1)(2)ABC如图所示A(2,1),B(4,3),C(5,1)【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答题21(1)3, 3;(2)1【分析】(1)根据解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可【详解】(1), 的整数部分是3,小数部分是3,解析:(1)3, 3;(2)1【分析】(1)根据解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可【详解】(1), 的整数部分是3,小数部分是3, 故答案为:3,3;(2)23,a2,
26、 34,b3,a+b2+31【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.二十二、解答题22不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使
27、它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二十三、解答题23(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由
28、MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(
29、1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键二十四、解答题24(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角
30、的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BCDE时,当BCEF时,当BCDF时,三种情况进行解答即可【详解】解:(1)作EIPQ,如图,PQMN,则PQEIMN,=DEI,IEA=BAC,DEA=+BAC,= DEA -BAC=60-45=15,E、C、A三点共线,=180-DFE=180-30=150;故答案为:15;150;(2)PQMN,GEF=CAB=45,FGQ=45+
31、30=75,GH,FH分别平分FGQ和GFA,FGH=37.5,GFH=75,FHG=180-37.5-75=67.5;(3)当BCDE时,如图1,D=C=90,ACDF,CAE=DFE=30,BAM+BAC=MAE+CAE,BAM=MAE+CAE-BAC=45+30-45=30;当BCEF时,如图2,此时BAE=ABC=45,BAM=BAE+EAM=45+45=90;当BCDF时,如图3,此时,ACDE,CAN=DEG=15,BAM=MAN-CAN-BAC=180-15-45=120综上所述,BAM的度数为30或90或120【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位
32、角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点二十五、解答题25DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)化成图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【问题探究】解:DPC=+ 如图,过P作PHDF DFCE,PCE=1=, PDF=2DPC=2+1=+ 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,DPC= - DFCE,PCE=1=, DPC=1-FDP=1-DPC= - 如图2,DPC= -DFCE,PDF=1= DPC=1-ACE=1-DPC= -