资源描述
2022年人教版中学七7年级下册数学期末复习(含答案)
一、选择题
1.一个有理数的平方等于,则这个数是()
A. B.或
C. D.
2.下列现象中,( )是平移
A.“天问”探测器绕火星运动 B.篮球在空中飞行
C.电梯的上下移动 D.将一张纸对折
3.在平面直角坐标系中,点P(﹣5,4)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
A.3个 B.2个 C.1个 D.0个
5.如图,一副直角三角板图示放置,点在的延长线上,点在边上,,,则( )
A. B. C. D.
6.下列说法正确的是( )
A.一个数的立方根有两个,它们互为相反数
B.负数没有立方根
C.任何一个数都有平方根和立方根
D.任何数的立方根都只有一个
7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC、AC分别交于点D、点E,直尺的另一边过A点且与三角尺的直角边BC交于点F,若∠CAF=42°,则∠CDE度数为( )
A.62° B.48° C.58° D.72°
8.如图,在平面直角坐标系上有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至…依照此规律跳动下去,点第124次跳动至的坐标为( )
A. B. C. D.
九、填空题
9.已知=8,则x的值是________________.
十、填空题
10.若点与关于轴对称,则____________________________.
十一、填空题
11.如图,在中,,,是的角平分线,,垂足为,,则__________.
十二、填空题
12.如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠1=∠2,那么∠1的度数为__________.
十三、填空题
13.如图所示是一张长方形形状的纸条,,则的度数为__________.
十四、填空题
14.已知M是满足不等式的所有整数的和,N是满足不等式x≤的最大整数,则M+N的平方根为________.
十五、填空题
15.第二象限内的点满足=,=,则点的坐标是___.
十六、填空题
16.如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,…,且每秒运动一个单位,到点用时2秒,到点用时6秒,到点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.求下列各式中的值:
(1);(2);(3).
十九、解答题
19.如图,已知:,.
求证:.
证明:∵(已知),
∴∠______=∠______(______).
∵(______),
∴∠______(等量代换).
∴(______).
二十、解答题
20.如图,在平面直角坐标系中,已知三角形三点的坐标分别为,,.
(1)求三角形的面积;
(2)在轴上存在一点,使三角形的面积等于三角形面积,求点的坐标.
二十一、解答题
21.已知
(1)求实数的值;
(2)若的整数部分为,小数部分为
①求的值;
②已知,其中是一个整数,且,求的值.
二十二、解答题
22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.
(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)
(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)
二十三、解答题
23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH.
(1)如图1,求证:GFEH;
(2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明.
二十四、解答题
24.综合与探究(问题情境)
王老师组织同学们开展了探究三角之间数量关系的数学活动.
(1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;
(问题迁移)
(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动.
①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;
②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.
二十五、解答题
25.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;
①若∠B=90°则∠F= ;
②若∠B=a,求∠F的度数(用a表示);
(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据一个数a,如果,那么a就叫做b的平方根求解即可.
【详解】
解:∵,
∴36的平方根为6或-6,
故选B.
【点睛】
本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义.
2.C
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:A. “天问”探测器绕火星运动不
解析:C
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:A. “天问”探测器绕火星运动不是平移,故此选项不符合题意;
B. 篮球在空中飞行不是平移,故此选项不符合题意;
C. 电梯的上下移动是平移,故此选项符合题意;
D. 将一张纸对折不是平移,故此选项不符合题意
故选:C.
【点睛】
本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别.
3.B
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点P(﹣5,4)位于第二象限.
故选:B.
【点睛】
本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键.
4.A
【分析】
根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案.
【详解】
平面内,垂直于同一条直线的两直线平行;故①正确,
经过直线外一点,有且只有一条直线与这条直线平行,故②正确
垂线段最短,故③正确,
两直线平行,同旁内角互补,故④错误,
∴正确命题有①②③,共3个,
故选:A.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
5.B
【分析】
根据平行线的性质可知, ,由 即可得出答案。
【详解】
解:∵
∴,
∵
∴
∴
故答案是B
【点睛】
本题主要考查了平行线的性质:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补.
6.D
【分析】
根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断.
【详解】
A、一个数的立方根只有1个,故本选项错误;
B、负数有立方根,故本选项错误;
C、负数只有立方根,没有平方根,故本选项错误;
D、任何数的立方根都只有一个,故本选项正确.
故选:D.
【点睛】
本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念.
7.B
【分析】
先根据平行线的性质求出∠CED,再根据三角形的内角和等于180°即可求出∠CDE.
【详解】
解:∵DE∥AF,∠CAF=42°,
∴∠CED=∠CAF=42°,
∵∠DCE=90°,∠CDE+∠CED+∠DCE=180°,
∴∠CDE=180°-∠CED-∠DCE=180°-42°-90°=48°,
故选:B.
【点睛】
本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键.
8.A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标
解析:A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…
第2n次跳动至点的坐标是(n+1,n),
∴第124次跳动至点的坐标是(63,62).
故选:A.
【点睛】
本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
九、填空题
9.65
【解析】
【分析】
根据算术平方根的定义确定x-1的值,解方程即可.
【详解】
∵=8
∴x-1=64
x=65
故答案为65
【点睛】
本题考查了算术平方根的定义,掌握算术平方根的定义是关键
解析:65
【解析】
【分析】
根据算术平方根的定义确定x-1的值,解方程即可.
【详解】
∵=8
∴x-1=64
x=65
故答案为65
【点睛】
本题考查了算术平方根的定义,掌握算术平方根的定义是关键.
十、填空题
10.0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点
解析:0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.
十一、填空题
11.【解析】
已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.
解析:【解析】
已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.
十二、填空题
12.【分析】
根据题意知:,得出,从而得出,从而求算∠1.
【详解】
解:如图:
∵
∴
又∵∠1=∠2,
∴,解得:
故答案为:
【点睛】
本题考查平行线的性质,掌握两直线平行,同位角相等是
解析:
【分析】
根据题意知:,得出,从而得出,从而求算∠1.
【详解】
解:如图:
∵
∴
又∵∠1=∠2,
∴,解得:
故答案为:
【点睛】
本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.
十三、填空题
13.5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=
解析:5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=180°-105°=75°,
∴∠2=(180°-75°)÷2=52.5°,
故答案为:52.5°.
【点睛】
此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.
十四、填空题
14.±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的
解析:±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的最大整数,
∴N=2,
∴M+N的平方根为:±=±2.
故答案为:±2.
【点睛】
此题主要考查了估计无理数的大小,得出M,N的值是解题关键.
十五、填空题
15.(-9, 2)
【分析】
点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.
【详解】
∵点在第二象限,
∴,,
又∵,,
∴,,
∴点的坐标是.
【点睛】
本题主要考查
解析:(-9, 2)
【分析】
点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.
【详解】
∵点在第二象限,
∴,,
又∵,,
∴,,
∴点的坐标是.
【点睛】
本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.
十六、填空题
16.【分析】
由题目中所给的点运动的特点找出规律,即可解答.
【详解】
由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,
解析:
【分析】
由题目中所给的点运动的特点找出规律,即可解答.
【详解】
由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;
从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;
依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,
可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,
∵20×20=400
∴第421秒时这个点所在位置的坐标为(19,20),
故答案为:(19,20).
【点睛】
本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.
十七、解答题
17.(1);(2).
【分析】
直接利用立方根以及算术平方根的定义化简得出答案.
【详解】
(1)
(2)
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
解析:(1);(2).
【分析】
直接利用立方根以及算术平方根的定义化简得出答案.
【详解】
(1)
(2)
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
十八、解答题
18.(1);(2);(3)
【分析】
直接根据平方根的定义逐个解答即可.
【详解】
解:(1)∵,
∴;
(2)∵,
∴,
∴;
(3)∵,
∴,
∴.
【点睛】
此题主要考查了平方根的定义,熟练掌握平
解析:(1);(2);(3)
【分析】
直接根据平方根的定义逐个解答即可.
【详解】
解:(1)∵,
∴;
(2)∵,
∴,
∴;
(3)∵,
∴,
∴.
【点睛】
此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键.
十九、解答题
19.;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得C
解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB∥DE.
【详解】
证明:∵AB∥CD,
∴∠B=∠C(两直线平行,内错角相等),
∵∠B+∠D=180°(已知),
∴∠C+∠D=180°(等量代换),
∴CB∥DE(同旁内角互补,两直线平行).
故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【点睛】
本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明.
二十、解答题
20.(1)的面积为5;(2)或
【分析】
(1)根据割补法可直接进行求解;
(2)由(1)可得,进而△的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解.
【详解】
解:(1)由图象可
解析:(1)的面积为5;(2)或
【分析】
(1)根据割补法可直接进行求解;
(2)由(1)可得,进而△的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解.
【详解】
解:(1)由图象可得:
;
(2)设点,由题意得:,
∴△的面积以点B的纵坐标为高,ON为底,即,
∴,
∴或.
【点睛】
本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题的关键.
二十一、解答题
21.(1);;(2)①;②
【分析】
(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a和b的值;
(2)根据(1)中b的值,可得的整数部分和小数部分,①将x和y的值代入
解析:(1);;(2)①;②
【分析】
(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a和b的值;
(2)根据(1)中b的值,可得的整数部分和小数部分,①将x和y的值代入即可求值;②估算的大小,再根据是一个整数,且,可得k和m的值,由此可得的值.
【详解】
解:(1)∵,
∴且,
∴,且,
即;
(2)∵,
∴,即的整数部分为4,小数部分为,
①;
②∵,
∴,
又∵,是一个整数,且,
∴,
∴.
【点睛】
本题考查分式为0的条件,算术平方根的整数部分和小数部分,不等式的性质,绝对值和算术平方根的非负性.(1)中掌握分式的值为0,分子为0且分母不为0是解题关键;(2)中理解一个数的整数部分+小数部分=这个数是解题关键.
二十二、解答题
22.(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个
解析:(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.
【详解】
解:(1)设正方形边长为,则,由算术平方根的意义可知,
所以正方形的边长是.
(2)不同意.
因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,
所以,即两个正方形边长的和大于长方形的长,
所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.
【点睛】
本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.
二十三、解答题
23.(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详
解析:(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详解】
(1)证明:,
,
,
,
;
(2)解:,理由如下:
如图2,过点作,过点作,
,
,
,,
,
同理,,
平分,平分,
,,
,
由(1)知,,
,
,
,
,
.
【点睛】
此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.
二十四、解答题
24.(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或
【分析】
(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠
解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或
【分析】
(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°;
(2)①过P作PE∥AD交ON于E,根据平行线的性质,可得到,,于是;
②分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照①的方法即可解答.
【详解】
解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:
作PC∥EF,如图1,
∵PC∥EF,EF∥MN,
∴PC∥MN,
∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°,
∴∠PAF+∠APC+∠PBN+∠CPB=360°,
∴∠PAF+∠PBN+∠APB=360°;
(2)①,
理由如下:如答图,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴
②当P在OB之间时,,理由如下:
如备用图1,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴;
当P在OA的延长线上时,,理由如下:
如备用图2,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴;
综上所述,∠CPD,∠α,∠β之间的数量关系是或.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.
二十五、解答题
25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC
解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;
(2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°.
【详解】
解:(1)①∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,
故答案为45°;
②∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;
(2)由(1)可得,∠F=∠ABC,
∵∠AGB与∠GAB的角平分线交于点H,
∴∠AGH=∠AGB,∠GAH=∠GAB,
∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,
∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,
∴∠F+∠H的值不变,是定值180°.
【点睛】
本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.
展开阅读全文