资源描述
2022年人教版七7年级下册数学期末复习(及答案)
一、选择题
1.下列图形中,与是同旁内角的是( )
A. B. C. D.
2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )
A. B. C. D.
3.若点在第二象限,则点在第( )象限
A.一 B.二 C.三 D.四
4.下列说法中不正确的个数为( ).
①在同一平面内,两条直线的位置关系只有两种:相交和垂直.
②有且只有一条直线垂直于已知直线.
③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
⑤过一点,有且只有一条直线与已知直线平行.
A.2个 B.3个 C.4个 D.5个
5.如图,直线,被直线所截,,,则的度数为( ).
A.40° B.60° C.45° D.70°
6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③是三次二项式;④立方根是本身的数有0和1;其中正确的是( )
A.①② B.①③ C.①②③ D.①②④
7.如图,和相交于点O,则下列结论正确的是( )
A. B. C. D.
8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,… 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )
A.(2020,0) B.(2021,-1) C.(2021,1) D.(2022,0)
九、填空题
9.如果,的平方根是,则__________.
十、填空题
10.若点A(5,b)与点B(a+1,3)关于x轴对称,则(a+b)=______
十一、填空题
11.如图.已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为________.
十二、填空题
12.如下图,C岛在A岛的北偏东65°方向,在B岛的北偏西35°方向,则______度.
十三、填空题
13.如图,将一张长方形纸片沿EF折叠后,点A,B分别落在A′,B′的位置.如果∠1=59°,那么∠2的度数是_____.
十四、填空题
14.按一定规律排列的一列数依次为:,,,,,,按此规律排列下去,这列数中第个数及第个数(为正整数)分别是__________.
十五、填空题
15.如图,若“马”所在的位置的坐标为,“象”所在位置的坐标为,则“将"所在位置的坐标为_______.
十六、填空题
16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,……,第次移动到点,则点的坐标是______.
十七、解答题
17.计算(1)
(2)
十八、解答题
18.求下列各式中的x值:
(1)
(2)
十九、解答题
19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
二十、解答题
20.在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(-3,3),C(-3,0).
(1)在平面直角坐标系中,描出O,A,B,C四点;
(2)依次连接OA,AB,BC,CO后,得到图形的形状是___________.
二十一、解答题
21.已知的整数部分是a,小数部分是b,求a+ 的值。
的整数部分是2,所以的小数部分是 −2,所以a=2,b=−2,
a+,
请根据以上解题提示,解答下题:
已知9+ 与9−的小数部分分别为a,b,求ab−4a+3b−2的值.
二十二、解答题
22.已知在的正方形网格中,每个小正方形的边长为1.
(1)计算图①中正方形的面积与边长.
(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和.
二十三、解答题
23.已知,AB∥DE,点C在AB上方,连接BC、CD.
(1)如图1,求证:∠BCD+∠CDE=∠ABC;
(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;
(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.
二十四、解答题
24.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN.
(1)如图①,求∠MPQ的度数(用含α的式子表示);
(2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由;
(3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由.
二十五、解答题
25.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.
(1)若点E的位置如图1所示.
①若∠ABE=60°,∠CDE=80°,则∠F= °;
②探究∠F与∠BED的数量关系并证明你的结论;
(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .
(3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 .
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同旁内角的定义去判断
【详解】
∵A选项中的两个角,符合同旁内角的定义,
∴选项A正确;
∵B选项中的两个角,不符合同旁内角的定义,
∴选项B错误;
∵C选项中的两个角,不符合同旁内角的定义,
∴选项C错误;
∵D选项中的两个角,不符合同旁内角的定义,
∴选项D错误;
故选A.
【点睛】
本题考查了同旁内角的定义,结合图形准确判断是解题的关键.
2.A
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;
B、图形由轴对称得到,不属于平移得到,不属于平移
解析:A
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;
B、图形由轴对称得到,不属于平移得到,不属于平移得到;
C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;
D、图形的大小发生变化,不属于平移得到;
故选:A.
【点睛】
本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.
3.C
【分析】
应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限.
【详解】
解:∵点在第二象限,
∴1+a<0,1-b>0;
∴a<-1, b-1<0,
即点在第三象限.
故选:C.
【点睛】
解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
4.C
【分析】
根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.
【详解】
∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;
∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;
从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;
过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;
∴不正确的有①②④⑤四个.
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.
5.A
【分析】
根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.
【详解】
解:如图,
∵AB∥CD,
∴∠2=∠D,
∵∠1=140°,
∴∠D=∠2=180°−∠1=180°−140°=40°,
故选:A.
【点睛】
此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.
6.A
【分析】
根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.
【详解】
①两个无理数的和可能是有理数,说法正确
如:和是无理数,,0是有理数
②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确
③是二次二项式,说法错误
④立方根是本身的数有0和,说法错误
综上,说法正确的是①②
故选:A.
【点睛】
本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.
7.A
【分析】
根据对顶角的性质和平行线的性质判断即可.
【详解】
解:A、∵和是对顶角,
∴,选项正确,符合题意;
B、∵与OB相交于点A,
∴与OB不平行,
∴,选项错误,不符合题意;
C、∵AO与BC相交于点B,
∴AO与BC不平行,
∴,选项错误,不符合题意;
D、∵OD与BC相交于点C,
∴OD与BC不平行,
∴,选项错误,不符合题意.
故选:A.
【点睛】
此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等.
8.C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为×2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长
解析:C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为×2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P每秒走个半圆,
∴当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
∵2021÷4=505余1,
∴P的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
九、填空题
9.-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
解析:-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
十、填空题
10.1
【分析】
关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值.
【详解】
解:∵点A(5,b)与点B(a+1,3)关于x轴对称,
∴5=a+1,b=-3,
∴a=4,
∴(a+b
解析:1
【分析】
关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值.
【详解】
解:∵点A(5,b)与点B(a+1,3)关于x轴对称,
∴5=a+1,b=-3,
∴a=4,
∴(a+b)2017=(4-3)2017=1.
故答案为:1.
【点睛】
本题考查了关于坐标轴对称的两点的坐标关系.关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数.
十一、填空题
11.120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】
解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
解析:120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】
解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
,
,
,
,
故答案为:.
【点睛】
本题考查了平行线的判定和性质,正确的识别图形是解题的关键.
十二、填空题
12.100
【分析】
根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.
【详解】
如图,作CE∥AD,则CE∥BF.
∵CE∥AD,∴=65°.
∵CE∥BF,∴=35°.
解析:100
【分析】
根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.
【详解】
如图,作CE∥AD,则CE∥BF.
∵CE∥AD,∴=65°.
∵CE∥BF,∴=35°.
∴=65°35°=100°.
故答案为:100.
【点睛】
本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.
十三、填空题
13.62°
【分析】
根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁
解析:62°
【分析】
根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.
【详解】
解:∵将一张长方形纸片沿EF折叠后,
点A、B分别落在A′、B′的位置,∠1=59°,
∴∠EFB′=∠1=59°,
∴∠B′FC=180°−∠1−∠EFB′=62°,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠2=∠B′FC=62°,
故答案为:62°.
【点睛】
本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
十四、填空题
14.;
【详解】
观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有,
又因为,,,,,所以第n个数的绝对值是,
所以第个数是,第n个数是,故答案为-82,.
点睛:本题主要考查了有理数的混合运
解析:;
【详解】
观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有,
又因为,,,,,所以第n个数的绝对值是,
所以第个数是,第n个数是,故答案为-82,.
点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.
十五、填空题
15.【分析】
结合题意,根据坐标的性质分析,即可得到答案.
【详解】
∵“马”所在的位置的坐标为,“象”所在位置的坐标为
∴棋盘中每一格代表1
∴“将"所在位置的坐标为,即
故答案为:.
【点睛】
本
解析:
【分析】
结合题意,根据坐标的性质分析,即可得到答案.
【详解】
∵“马”所在的位置的坐标为,“象”所在位置的坐标为
∴棋盘中每一格代表1
∴“将"所在位置的坐标为,即
故答案为:.
【点睛】
本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解.
十六、填空题
16.(1010,-1)
【分析】
根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-
解析:(1010,-1)
【分析】
根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…,
可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化, 横坐标每一次循环增加4
∵2021÷8=252…5,
∴的坐标为(252×4+2,-1),
∴点的坐标是是(1010,-1).
故答案为:(1010,-1).
【点睛】
本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.
十七、解答题
17.(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(
解析:(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(2),
,
.
【点睛】
本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.
十八、解答题
18.(1)x=-15;(2)x=8或x=-4
【分析】
(1)利用直接开立方法求得x的值;
(3)利用直接开平方法求得x的值.
【详解】
解:(1),
∴,
∴,
解得:x=-15;
(2),
∴,
∴
解析:(1)x=-15;(2)x=8或x=-4
【分析】
(1)利用直接开立方法求得x的值;
(3)利用直接开平方法求得x的值.
【详解】
解:(1),
∴,
∴,
解得:x=-15;
(2),
∴,
∴,
解得:x=8或x=-4.
【点睛】
本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.
十九、解答题
19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁
解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
二十、解答题
20.(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
解析:(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.
二十一、解答题
21.-3.
【解析】
【分析】
根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题.
【详解】
∵9+ 与9−的小数部分分别为a,b,
∴a=9+−12=−3,b=9−−5=4−
解析:-3.
【解析】
【分析】
根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题.
【详解】
∵9+ 与9−的小数部分分别为a,b,
∴a=9+−12=−3,b=9−−5=4−,
∴ab−4a+3b−2=(−3)(4−)−4(−3)+3(4-)-2=7-13-12-4+12+12-3-2=-3.
【点睛】
此题考查估算无理数的大小,解题关键在于分别求得a、b的值.
二十二、解答题
22.(1)正方形的面积为10,正方形的边长为;(2)见解析
【分析】
(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;
(2)根据(1)的方法画
解析:(1)正方形的面积为10,正方形的边长为;(2)见解析
【分析】
(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;
(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.
【详解】
解:(1)正方形的面积为4×4-4××3×1=10
则正方形的边长为;
(2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点
∴正方形的边长为
∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示.
【点睛】
此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.
二十三、解答题
23.(1)证明见解析;(2);(3).
【分析】
(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质
解析:(1)证明见解析;(2);(3).
【分析】
(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论;
(3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案.
【详解】
证明:(1)如图,过点作,
,
,
,
,即,
,
;
(2)如图,过点作,
,
,
,
,即,
,
,
,
,
;
(3)如图,过点作,延长至点,
,
,
,
,
平分,平分,
,
由(2)可知,,
,
又,
.
【点睛】
本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
二十四、解答题
24.(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析
【分析】
1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;
(2)根据已知条件可得2∠EPQ+2∠PEF=
解析:(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析
【分析】
1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;
(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;
(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可得结论.
【详解】
解:(1)如图①,过点P作PR∥AB,
∵AB∥CD,
∴AB∥CD∥PR,
∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,
∴∠MPQ=∠MPR+∠RPQ=2α;
(2)如图②,EF⊥PQ,理由如下:
∵PQ平分∠MPN.
∴∠MPQ=∠NPQ=2α,
∵QE∥PN,
∴∠EQP=∠NPQ=2α,
∴∠EPQ=∠EQP=2α,
∵EF平分∠PEQ,
∴∠PEQ=2∠PEF=2∠QEF,
∵∠EPQ+∠EQP+∠PEQ=180°,
∴2∠EPQ+2∠PEF=180°,
∴∠EPQ+∠PEF=90°,
∴∠PFE=180°﹣90°=90°,
∴EF⊥PQ;
(3)如图③,∠NEF=∠AMP,理由如下:
由(2)可知:∠EQP=2α,∠EFQ=90°,
∴∠QEF=90°﹣2α,
∵∠PQN=α,
∴∠NQE=∠PQN+∠EQP=3α,
∵NE平分∠PNQ,
∴∠PNE=∠QNE,
∵QE∥PN,
∴∠QEN=∠PNE,
∴∠QNE=∠QEN,
∵∠NQE=3α,
∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),
∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE
=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)
=180°﹣90°+2α﹣3α﹣90°+α
=α
=∠AMP.
∴∠NEF=∠AMP.
【点睛】
本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键.
二十五、解答题
25.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A
解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;
②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;
(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;
(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.
【详解】
(1)①过F作FG//AB,如图:
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠ABF=∠BFG,∠CDF=∠DFG,
∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,
∴∠ABF+∠CDF=70,
∴∠DFB=∠ABF+∠CDF=70,
故答案为:70;
②∠F=∠BED,
理由是:分别过E、F作EN//AB,FM//AB,
∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,
∴∠BED=∠ABE+∠CDE,
∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,
∴∠ABE=2∠ABF,∠CDE=2∠CDF,
即∠BED=2(∠ABF+∠CDF);
同理,由FM//AB,可得∠F=∠ABF+∠CDF,
∴∠F=∠BED;
(3)2∠F+∠BED=360°.
如图,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
∵AB∥CD,EG∥AB,
∴CD∥EG,
∴∠DEG+∠CDE=180°,
∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由①得:∠BFD=∠ABF+∠CDF,
∴∠BED=360°-2∠BFD,
即2∠F+∠BED=360°;
(3)∵,∠F=α,
∴,
解得:,
如图,
∵∠CDE 为锐角,DF是∠CDE的角平分线,
∴∠CDH=∠DHB,
∴∠F∠DHB,即,
∴,
故答案为:.
【点睛】
本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.
展开阅读全文