1、2022年人教版七7年级下册数学期末复习(及答案)一、选择题1下列图形中,与是同旁内角的是()ABCD2下列图形中,能将其中一个图形平移得到另一个图形的是 ( )ABCD3若点在第二象限,则点在第( )象限A一B二C三D四4下列说法中不正确的个数为()在同一平面内,两条直线的位置关系只有两种:相交和垂直有且只有一条直线垂直于已知直线如果两条直线都与第三条直线平行,那么这两条直线也互相平行从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离过一点,有且只有一条直线与已知直线平行A2个B3个C4个D5个5如图,直线,被直线所截,则的度数为( )A40B60C45D706下列说法:两个无理数的和
2、可能是有理数:任意一个有理数都可以用数轴上的点表示;是三次二项式;立方根是本身的数有0和1;其中正确的是( )ABCD7如图,和相交于点O,则下列结论正确的是( )ABCD8如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3, 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A(2020,0)B(2021,-1)C(2021,1)D(2022,0)九、填空题9如果,的平方根是,则_十、填空题10若点A(5,b)与点B(a+1,3)关于x轴对称,则(a+b)=_十一、填空题11如图已知点为两条相互平行的直线
3、之间一动点,和的角平分线相交于,若,则的度数为_十二、填空题12如下图,C岛在A岛的北偏东65方向,在B岛的北偏西35方向,则_度十三、填空题13如图,将一张长方形纸片沿EF折叠后,点A,B分别落在A,B的位置如果159,那么2的度数是_十四、填空题14按一定规律排列的一列数依次为:,按此规律排列下去,这列数中第个数及第个数(为正整数)分别是_十五、填空题15如图,若“马”所在的位置的坐标为,“象”所在位置的坐标为,则“将所在位置的坐标为_十六、填空题16在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上向右向下向右向下向右向上向右”的方向依次不断移动,每次移动1个单位长度,
4、其移动路线如图所示,第一次移动到点,第二次移动到点,第次移动到点,则点的坐标是_十七、解答题17计算(1)(2)十八、解答题18求下列各式中的x值:(1)(2)十九、解答题19如图,已知1+AFE=180,A=2,求证:A=C+AFC 证明: 1+AFE=180 CDEF( , )A=2 ( ) ( , ) ABCDEF( , ) A= ,C= ,( , ) AFE =EFC+AFC , = 二十、解答题20在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(3,3),C(3,0)(1)在平面直角坐标系中,描出O,A,B,C四点;(2)依次连接OA,AB,BC
5、,CO后,得到图形的形状是_二十一、解答题21已知的整数部分是a,小数部分是b,求a+ 的值。的整数部分是2,所以的小数部分是 2,所以a=2,b=2,a+,请根据以上解题提示,解答下题:已知9+ 与9的小数部分分别为a,b,求ab4a+3b2的值.二十二、解答题22已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和二十三、解答题23已知,ABDE,点C在AB上方,连接BC、CD(1)如图1,求证:BCDCDEABC;(2)如图2,过点C作CFBC交ED的延长线于点F,探究
6、ABC和F之间的数量关系;(3)如图3,在(2)的条件下,CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分ABC,求BGDCGF的值二十四、解答题24已知ABCD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,AMPPQN,PQ平分MPN(1)如图,求MPQ的度数(用含的式子表示);(2)如图,过点Q作QEPN交PM的延长线于点E,过E作EF平分PEQ交PQ于点F请你判断EF与PQ的位置关系,并说明理由;(3)如图,在(2)的条件下,连接EN,若NE平分PNQ,请你判断NEF与AMP的数量关系,并说明理由二十五、解答题25已知ABCD,点E是平面内一点,CDE的
7、角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 【参考答案】一、选择题1A解析:A【分析】根据同旁内角的定义去判断【详解】A选项中的两个角,符合同旁内角的定义,选项A正确;B选项中的两个角,不符合同旁内角的定义,选项B错误;C选项中的两个角,不符合同旁内角的定义,选项C错误;D选项中的两个角,不符合同旁内角的定义,选项D错误;故选A【点睛】本题考查了同旁内角的定义
8、,结合图形准确判断是解题的关键2A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到; C、图形由旋转变换得到,不符合平移的性质,不属于平移得到; D、图形的大小发生变化,不属于平移得到;故选:A【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向掌握平移的
9、性质是解题的关键3C【分析】应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限【详解】解:点在第二象限,1+a0,1-b0;a-1, b-10, 即点在第三象限故选:C【点睛】解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负4C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可【详解】在同一平面内,两条直线的位置关系只有两种:相交和平行,故不正确;过直线外一点有且只有一条直线垂直于已知直线故不正确;如果两条直线都与第三条直线平行,那么这两条直
10、线也互相平行故正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离故不正确;过直线外一点,有且只有一条直线与已知直线平行故不正确;不正确的有四个故选:C【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解5A【分析】根据平行线的性质得出2D,进而利用邻补角得出答案即可【详解】解:如图,ABCD,2D,1140,D2180118014040,故选:A【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答6A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可【详解】两个无理数的和可能是有理数
11、,说法正确如:和是无理数,0是有理数有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确是二次二项式,说法错误立方根是本身的数有0和,说法错误综上,说法正确的是故选:A【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键7A【分析】根据对顶角的性质和平行线的性质判断即可【详解】解:A、和是对顶角,选项正确,符合题意;B、与OB相交于点A,与OB不平行,选项错误,不符合题意;C、AO与BC相交于点B,AO与BC不平行,选项错误,不符合题意;D、OD与BC相交于点C,OD与BC不平行,,选项错误,不符合题
12、意故选:A【点睛】此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质对顶角相等8C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标【详解】解:半径为1个单位长度的半圆的周长为21=,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标【详解】解:半径为1个单位长度的半圆的周长为21=,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这
13、条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),20214=505余1,P的坐标是(2021,1),故选:C【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题九、填空题9-4【分析】根据题意先求出 ,再代入,即可【详解】解
14、:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值解析:-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值十、填空题101【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值【详解】解:点A(5,b)与点B(a+1,3)关于x轴对称,5=a+1,b=-3,a=4,(a+b解析:1【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值【详解】解:点A(5,b)与点B(a+1,3)关于x轴对称,
15、5=a+1,b=-3,a=4,(a+b)2017=(4-3)2017=1故答案为:1【点睛】本题考查了关于坐标轴对称的两点的坐标关系关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数十一、填空题11120【分析】由角平分线的定义可得,又由,得,;设,则;再根据四边形内角和定理得到,最后根据即可求解【详解】解:和的角平分线相交于,又,设,在四边形中,解析:120【分析】由角平分线的定义可得,又由,得,;设,则;再根据四边形内角和定理得到,最后根据即可求解【详解】解:和的角平分线相交于,又,设,在四边形中,故答案为:【点睛】本题考查了平行线的判定和性质,正确的
16、识别图形是解题的关键十二、填空题12100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35解析:100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35=6535=100故答案为:100【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线两直线平行,内错角相等十三、填空题1362【分析】根据折叠的性质求出EFB159,BFC1801EFB62,根据平行线的性质:两直线平行,同位角
17、相等,两直线平行,内错角相等,两直线平行,同旁解析:62【分析】根据折叠的性质求出EFB159,BFC1801EFB62,根据平行线的性质:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补:求出即可【详解】解:将一张长方形纸片沿EF折叠后,点A、B分别落在A、B的位置,159,EFB159,BFC1801EFB62,四边形ABCD是矩形,ADBC,2BFC62,故答案为:62【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出BFC的度数,注意:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补十四、填空题14;【详解】观察这一列
18、数,各项的符号规律是奇数项为负,偶数项为正,故有,又因为,所以第n个数的绝对值是,所以第个数是,第n个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:;【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有,又因为,所以第n个数的绝对值是,所以第个数是,第n个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律十五、填空题15【分析】结合题意,根据坐标的性质分析,即可得到答案【详解】“马”所在
19、的位置的坐标为,“象”所在位置的坐标为棋盘中每一格代表1“将所在位置的坐标为,即故答案为:【点睛】本解析:【分析】结合题意,根据坐标的性质分析,即可得到答案【详解】“马”所在的位置的坐标为,“象”所在位置的坐标为棋盘中每一格代表1“将所在位置的坐标为,即故答案为:【点睛】本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解十六、填空题16(1010,1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-解析:(1010,1)【分析】根据图象可得移动8次图象完成一
20、个循环,从而可得出点的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化, 横坐标每一次循环增加4202182525,的坐标为(25242,-1),点的坐标是是(1010,-1)故答案为:(1010,-1)【点睛】本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般十七、解答题17(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结
21、果(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可【详解】(1),(解析:(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可【详解】(1),(2),【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外有理数的运算律在实数范围内仍然适用十八、解答题18(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值
22、;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解析:(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解得:x=8或x=-4【点睛】本题考查了立方根和平方根正数的立方根是正数,0的立方根是0,负数的立方根是负数即任意数都有立方根十九、解答题19同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁解析:同旁内角互补两直线平行;A
23、BCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁内角互补,两直线平行可得 CDEF,根据A=2利用同位角相等,两直线平行,ABCD,根据平行同一直线的两条直线平行可得ABCDEF根据平行线的性质可得A=AFE ,C=EFC,根据角的和可得 AFE =EFC+AFC 即可【详解】证明: 1+AFE=180 CDEF(同旁内角互补,两直线平行),A=2 ,( ABCD ) (同位角相等,两直线平行), ABCDEF(两条直线都与第三条直线平行,则这两直线也互相平行) A= AFE ,C= EF
24、C,(两直线平行,内错角相等) AFE =EFC+AFC , A = C+AFC 故答案为同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键二十、解答题20(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形【详解】解:(1)如图(2)四边形ABCO是正方形【点睛】解析:(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位
25、置即可;(2)观察图形可知四边形ABCO是正方形【详解】解:(1)如图(2)四边形ABCO是正方形【点睛】本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键二十一、解答题21-3.【解析】【分析】根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题【详解】9+ 与9的小数部分分别为a,b,a=9+12=3,b=95=4解析:-3.【解析】【分析】根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题【详解】9+ 与9的小数部分分别为a,b,a=9+12=3,b=95=4,ab4a+3b2=(3)(4)4(3)+3(4-)-2=
26、7-13-12-4+12+12-3-2=-3.【点睛】此题考查估算无理数的大小,解题关键在于分别求得a、b的值.二十二、解答题22(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形
27、的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键二十三、解答题23(1)证明见解析;(2);(3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2);(
28、3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质得出,从而可得,再根据垂直的定义可得,由此即可得出结论;(3)过点作,延长至点,先根据平行线的性质可得,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案【详解】证明:(1)如图,过点作,即,;(2)如图,过点作,即,;(3)如图,过点作,延长至点,平分,平分,由(2)可知,又,【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键二十四
29、、解答题24(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF解析:(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF180,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得QNEQEN,根据三角形内角和定理可得QNE(180NQE)(1803),可得NEF180QEFNQEQNE,进而可得结论【详解】解:(1)如图,过点P作PRAB,ABCD,AB
30、CDPR,AMPMPR,PQNRPQ,MPQMPR+RPQ2;(2)如图,EFPQ,理由如下:PQ平分MPNMPQNPQ2,QEPN,EQPNPQ2,EPQEQP2,EF平分PEQ,PEQ2PEF2QEF,EPQ+EQP+PEQ180,2EPQ+2PEF180,EPQ+PEF90,PFE1809090,EFPQ;(3)如图,NEFAMP,理由如下:由(2)可知:EQP2,EFQ90,QEF902,PQN,NQEPQN+EQP3,NE平分PNQ,PNEQNE,QEPN,QENPNE,QNEQEN,NQE3,QNE(180NQE)(1803),NEF180QEFNQEQNE180(902)3(18
31、03)18090+2390+AMPNEFAMP【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键二十五、解答题25(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+A解析:(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+ABF,利用角平分线的定义得到ABE+CDE=2ABF+2CDF=2(ABF+CDF),求得ABF+CDF=70,即可求解;分别
32、过E、F作EN/AB,FM/AB,利用平行线的判定和性质得到BED=ABE+CDE,利用角平分线的定义得到BED=2(ABF+CDF),同理得到F=ABF+CDF,即可求解;(2)根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合的结论即可说明BED与BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得【详解】(1)过F作FG/AB,如图:ABCD,FGAB,CDFG,ABF=BFG,CDF=DFG,DFB=DFG+BFG=CDF+ABF
33、,BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,ABE+CDE=2ABF+2CDF=2(ABF+CDF)=60+80=140,ABF+CDF=70,DFB=ABF+CDF=70,故答案为:70;F=BED, 理由是:分别过E、F作EN/AB,FM/AB,EN/AB,BEN=ABE,DEN=CDE,BED=ABE+CDE,DF、BF分别是CDE的角平分线与ABE的角平分线,ABE=2ABF,CDE=2CDF,即BED=2(ABF+CDF);同理,由FM/AB,可得F=ABF+CDF,F=BED;(3)2F+BED=360如图,过点E作EGAB,则BEG+ABE=180,ABCD,EGAB,CDEG,DEG+CDE=180,BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,BED=360-2(ABF+CDF),由得:BFD=ABF+CDF,BED=360-2BFD,即2F+BED=360;(3),F=,解得:,如图,CDE 为锐角,DF是CDE的角平分线,CDH=DHB,FDHB,即,故答案为:【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100