资源描述
2023年人教版中学七7年级下册数学期末综合复习试卷含答案大全
一、选择题
1.如图,与是同位角的是( )
A. B. C. D.
2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中,点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列句子中,属于命题的是( )
①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线.
A.①④ B.①②④ C.①②③ D.②③
5.如图,已知平分,平分,.下列结论正确的有( )
①;②;③;④若,则.
A.1个 B.2个 C.3个 D.4个
6.下列说法正确的是( )
A.是分数 B.互为相反数的数的立方根也互为相反数
C.的系数是 D.的平方根是
7.如图,直线l∥m,等腰Rt△ABC中,∠ACB=90°,直线l分别与AC、BC边交于点D、E,另一个顶点B在直线m上,若∠1=28°,则∠2=( )
A.75° B.73° C.62° D.17°
8.如图,将边长为1的正方形沿轴正方向连续翻转2020次,点依次落在点、、、…的位置上,则点的坐标为( ).
A. B. C. D.
九、填空题
9.已知x,y为实数,且,则x-y=___________.
十、填空题
10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.
十一、填空题
11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____.
十二、填空题
12.如图,,点在上,点在上,则的度数等于______.
十三、填空题
13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____.
十四、填空题
14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.
十五、填空题
15.如果点P(m+3,m﹣2)在x轴上,那么m=_____.
十六、填空题
16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到An,则A2021的坐标是___________.
十七、解答题
17.(1)已知,求x的值;
(2)计算:.
十八、解答题
18.求下列各式中的值:
(1);
(2).
十九、解答题
19.已知,如图所示,BCE,AFE是直线,AB//CD,∠1=∠2,∠3=∠4.求证:AD//BE
证明:∵AB//CD(已知)
∴∠4=∠ ( )
∵∠3=∠4(已知)
∴∠3=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF( )
即:∠ =∠ .
∴∠3=∠ .
∴AD//BE( )
二十、解答题
20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A→C( , ),B→D( , ),C→ (+1, );
(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.
二十一、解答题
21.若整数的两个平方根为,;为的整数部分.
(1)求及的值;
(2)求的立方根.
二十二、解答题
22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.
二十三、解答题
23.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0
(1)α= ,β= ;直线AB与CD的位置关系是 ;
(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;
(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由.
二十四、解答题
24.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN.
(1)如图①,求∠MPQ的度数(用含α的式子表示);
(2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由;
(3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由.
二十五、解答题
25.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,
如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解.
【详解】
解:观察图形可知,与∠1是同位角的是∠4.
故选:C.
【点睛】
本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.
2.C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到
解析:C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到.
故选C.
【点睛】
本题考查生活中的平移现象,仔细观察各选项图形是解题的关键.
3.B
【分析】
根据直角坐标系的性质分析,即可得到答案.
【详解】
点位于第二象限
故选:B.
【点睛】
本题考查了直角坐标系的知识;解题的关键是熟练掌握象限、坐标的性质,从而完成求解.
4.B
【分析】
根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可.
【详解】
解: ①三角形的内角和等于180°,是三角形内角和定理,是命题;
②对顶角相等,是对顶角的性质,是命题;
③过一点作已知直线的垂线,是作图,不是命题;
④两点确定一条直线,是直线的性质,是命题,
综上所述,属于命题是①②④.
故选:B.
【点睛】
此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断.
5.C
【分析】
由三个已知条件可得AB∥CD,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC∥BD,可知③错误;由及平分,可得∠ACP=∠E,得AC∥BD,从而由平行线的性质易得,即④正确.
【详解】
∵平分,平分
∴∠ACD=2∠ACP=2∠2,∠CAB=2∠1=2∠CAP
∵
∴∠ACD+∠CAB=2(∠1+∠2)=2×90゜=180゜
∴
故①正确
∵
∴∠ABE=∠CDB
∵∠CDB+∠CDF=180゜
∴
故②正确
由已知条件无法推出AC∥BD
故③错误
∵,∠ACD=2∠ACP=2∠2
∴∠ACP=∠E
∴AC∥BD
∴∠CAP=∠F
∵∠CAB=2∠1=2∠CAP
∴
故④正确
故正确的序号为①②④
故选:C.
【点睛】
本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键.
6.B
【分析】
根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案.
【详解】
∵是无理数,
∴A错误,
∵互为相反数的数的立方根也互为相反数,
∴B正确,
∵的系数是,
∴C错误,
∵的平方根是±8,
∴D错误,
故选B.
【点睛】
本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键.
7.B
【分析】
如图标注字母M,首先根据等腰直角三角形的性质得出,再利用平行线的性质即可得出∠2的度数.
【详解】
解:如图标注字母M,
∵△ABC是等腰直角三角形,
∴,
∴,
又∵l∥m,
∴,
故选:B.
【点睛】
本题主要考查等腰直角三角形的性质和平行线的性质,解题关键是熟练掌握等腰直角三角形的性质和平行线的性质.平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.
8.D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化
解析:D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点向右前行4个单位.
九、填空题
9.-1
【分析】
根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可.
【详解】
解:∵,
∴
解得:
∴x-y=-1
故答案为:-1.
【点睛】
此题考查的是非负性的应用,掌握算术平方
解析:-1
【分析】
根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可.
【详解】
解:∵,
∴
解得:
∴x-y=-1
故答案为:-1.
【点睛】
此题考查的是非负性的应用,掌握算术平方根的非负性和平方的非负性是解决此题的关键.
十、填空题
10.21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所
解析:21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.
故答案为21:05
【点睛】
本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.
十一、填空题
11.4cm
【详解】
∵BC=10cm,BD:DC=3:2,
∴BD=6cm,CD=4cm,
∵AD是△ABC的角平分线,∠ACB=90°,
∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.
解析:4cm
【详解】
∵BC=10cm,BD:DC=3:2,
∴BD=6cm,CD=4cm,
∵AD是△ABC的角平分线,∠ACB=90°,
∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.
十二、填空题
12.180°
【分析】
根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案
【详解】
解:∵AB∥
解析:180°
【分析】
根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案
【详解】
解:∵AB∥CD,
∴∠1=∠AFD,
∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,
∴∠2+360°-∠1-∠3=180°,
∴∠1+∠3-∠2=180°,
故答案为:180°
【点睛】
本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解
十三、填空题
13.55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
解析:55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
∵ABDE,
∴∠2=∠3=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
十四、填空题
14.或
【详解】
【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.
【详解】M{3,2x+1,4x-1}==2x+1
解析:或
【详解】
【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.
【详解】M{3,2x+1,4x-1}==2x+1,
∵M{3,2x+1,4x-1}=min{2,-x+3,5x},
∴有如下三种情况:
①2x+1=2,x=,此时min{2,-x+3,5x}= min{2,,}=2,成立;
②2x+1=-x+3,x=,此时min{2,-x+3,5x}= min{2,,}=2,不成立;
③2x+1=5x,x=,此时min{2,-x+3,5x}= min{2,,}=,成立,
∴x=或,
故答案为或.
【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.
十五、填空题
15.【分析】
根据x轴上的点的纵坐标等于0列式计算即可得解.
【详解】
∵点P(m+3,m﹣2)在x轴上,
∴m﹣2=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记x轴上的点的纵
解析:【分析】
根据x轴上的点的纵坐标等于0列式计算即可得解.
【详解】
∵点P(m+3,m﹣2)在x轴上,
∴m﹣2=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.
十六、填空题
16.(1011,0)
【分析】
根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.
【详解】
解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,
解析:(1011,0)
【分析】
根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.
【详解】
解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,
2021÷4=505•••1,
所以A2021的坐标为(505×2+1,0),
则A2021的坐标是(1011,0).
故答案为:(1011,0).
【点睛】
本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.
十七、解答题
17.(1)x=3或x=-1;(2)
【分析】
(1)根据平方根的性质求解;
(2)根据绝对值、算术平方根和立方根的性质求解.
【详解】
(1)解:∵;
∴
∴x=3或x=-1
(2)原式=
,
【
解析:(1)x=3或x=-1;(2)
【分析】
(1)根据平方根的性质求解;
(2)根据绝对值、算术平方根和立方根的性质求解.
【详解】
(1)解:∵;
∴
∴x=3或x=-1
(2)原式=
,
【点睛】
本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.
十八、解答题
18.(1)或;(2)
【分析】
(1)根据平方根的性质求解即可;
(2)根据立方根的性质求解即可;
【详解】
(1),
,
,
或,
∴或;
(2),
,
;
【点睛】
本题主要考查了平方根的性质应用和
解析:(1)或;(2)
【分析】
(1)根据平方根的性质求解即可;
(2)根据立方根的性质求解即可;
【详解】
(1),
,
,
或,
∴或;
(2),
,
;
【点睛】
本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键.
十九、解答题
19.FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行
【分析】
根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=
解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行
【分析】
根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=∠BAF,根据平行线的判定推出即可.
【详解】
证明:∵AB//CD(已知)
∴∠4=∠FAB(两直线平行,同位角相等)
∵∠3=∠4(已知)
∴∠3=∠FAB(等量代换)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性质)
即:∠FAB=∠CAD
∴∠3=∠CAD
∴AD//BE(内错角相等,两直线平行)
故填:BAF,两直线平行,同位角相等,BAF,等量代换,DAC,DAC,内错角相等,两直线平行.
【点睛】
本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
二十、解答题
20.(1)3,4,3,﹣2,D,﹣2;(2)见解析
【分析】
(1)根据向上向右走为正,向下向左走为负,可得答案;
(2)根据向上向右走为正,向下向左走为负,可得答案.
【详解】
解:(1)A→C( 3
解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析
【分析】
(1)根据向上向右走为正,向下向左走为负,可得答案;
(2)根据向上向右走为正,向下向左走为负,可得答案.
【详解】
解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);
故答案为3,4;3,﹣2;D,﹣2;
(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图
【点睛】
本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.
二十一、解答题
21.(1)a=4,m=36;(2)6
【分析】
(1)根据平方根的性质得到,求出a值,从而得到m;
(2)估算出的范围,得到b值,代入求出,从而得到的立方根.
【详解】
解:(1)∵整数的两个平方根为,
解析:(1)a=4,m=36;(2)6
【分析】
(1)根据平方根的性质得到,求出a值,从而得到m;
(2)估算出的范围,得到b值,代入求出,从而得到的立方根.
【详解】
解:(1)∵整数的两个平方根为,,
∴,
解得:,
∴,
∴m=36;
(2)∵为的整数部分,
∴,
∴,
∴b=9,
∴,
∴的立方根为6.
【点睛】
本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.
二十二、解答题
22.正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:
,
∴,
取正值,可得,
解析:正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:
,
∴,
取正值,可得,
∴答:正方形纸板的边长是18厘米.
【点评】
本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.
二十三、解答题
23.(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于
解析:(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得.
【详解】
解:(1),
,,
,
,,
,
;
故答案为:20、20,;
(2);
理由:由(1)得,
,
,
,
,
,
,
;
(3)的值不变,;
理由:如图3中,作的平分线交的延长线于,
,
,
,,
,
,
,
设,,
则有:,
可得,
,
.
【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
二十四、解答题
24.(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析
【分析】
1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;
(2)根据已知条件可得2∠EPQ+2∠PEF=
解析:(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析
【分析】
1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;
(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;
(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可得结论.
【详解】
解:(1)如图①,过点P作PR∥AB,
∵AB∥CD,
∴AB∥CD∥PR,
∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,
∴∠MPQ=∠MPR+∠RPQ=2α;
(2)如图②,EF⊥PQ,理由如下:
∵PQ平分∠MPN.
∴∠MPQ=∠NPQ=2α,
∵QE∥PN,
∴∠EQP=∠NPQ=2α,
∴∠EPQ=∠EQP=2α,
∵EF平分∠PEQ,
∴∠PEQ=2∠PEF=2∠QEF,
∵∠EPQ+∠EQP+∠PEQ=180°,
∴2∠EPQ+2∠PEF=180°,
∴∠EPQ+∠PEF=90°,
∴∠PFE=180°﹣90°=90°,
∴EF⊥PQ;
(3)如图③,∠NEF=∠AMP,理由如下:
由(2)可知:∠EQP=2α,∠EFQ=90°,
∴∠QEF=90°﹣2α,
∵∠PQN=α,
∴∠NQE=∠PQN+∠EQP=3α,
∵NE平分∠PNQ,
∴∠PNE=∠QNE,
∵QE∥PN,
∴∠QEN=∠PNE,
∴∠QNE=∠QEN,
∵∠NQE=3α,
∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),
∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE
=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)
=180°﹣90°+2α﹣3α﹣90°+α
=α
=∠AMP.
∴∠NEF=∠AMP.
【点睛】
本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键.
二十五、解答题
25.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠
解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;
(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可.
【详解】
解:(1)∠ACB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分别是∠BAP和∠ABM角的平分线,
∴∠BAC=∠PAB,∠ABC=∠ABM,
∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,
∴∠ACB=45°;
(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,
∴∠CAB=∠BAQ,
∵AC平分∠PAB,
∴∠PAC=∠CAB,
∴∠PAC=∠CAB=∠BAO=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵将△ABC沿直线AB折叠,若点C落在直线MN上,
∴∠ABC=∠ABN,
∵BC平分∠ABM,
∴∠ABC=∠MBC,
∴∠MBC=∠ABC=∠ABN,
∴∠ABO=60°,
故答案为:30°,60°;
(3)∵AE、AF分别是∠BAO与∠GAO的平分线,
∴∠EAO=∠BAO,∠FAO=∠GAO,
∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.
在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO= ∠BAO,∠EOQ=∠BOQ,
∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,
∵有一个角是另一个角的倍,故有:
①∠EAF=∠F,∠E=30°,∠ABO=60°;
②∠F=∠E,∠E=36°,∠ABO=72°;
③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);
④∠E=∠F,∠E=54°,∠ABO=108°(舍去);
∴∠ABO为60°或72°.
【点睛】
本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.
展开阅读全文