收藏 分销(赏)

人教版中学七年级下册数学期末质量检测含解析.doc

上传人:精**** 文档编号:1924034 上传时间:2024-05-11 格式:DOC 页数:25 大小:482.04KB
下载 相关 举报
人教版中学七年级下册数学期末质量检测含解析.doc_第1页
第1页 / 共25页
人教版中学七年级下册数学期末质量检测含解析.doc_第2页
第2页 / 共25页
人教版中学七年级下册数学期末质量检测含解析.doc_第3页
第3页 / 共25页
人教版中学七年级下册数学期末质量检测含解析.doc_第4页
第4页 / 共25页
人教版中学七年级下册数学期末质量检测含解析.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、人教版中学七年级下册数学期末质量检测含解析一、选择题1的算术平方根是()ABCD2下列生活现象中,属于平移的是( )A钟摆的摆动B拉开抽屉C足球在草地上滚动D投影片的文字经投影转换到屏幕上3在平面直角坐标系中有四个点,其中在第一象限的点是( )ABCD4下列命题是假命题的是( )A对顶角相等B两条直线被第三条直线所截,同位角相等C在同一平面内,垂直于同一条直线的两条直线互相平行D在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5如图,点为上方一点,分别为的角平分线,若,则的度数为( )ABCD6下列叙述中,1的立方根为1;4的平方根为2;8立方根是2;的算术平方根为正确的是( )AB

2、CD7如图,已知,平分,则的度数是( )ABCD8如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A(1,1)B(1,1)C(2,1)D(2,0)九、填空题9已知是实数,且则的值是_.十、填空题10在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_十一、填空题11在ABC中,若A=60,点O是ABC和ACB角平分线的交点,则BOC=_十二、填空题12如图,已知a/b,

3、150,2115,则3_十三、填空题13如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在点D1、C1的位置,如果=40,那么EFB的度数是_度十四、填空题14任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,对144只需进行_次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_十五、填空题15若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为_.十六、填空题16如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0),沿长方形

4、BCDE的边作环绕运动物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是_十七、解答题17计算下列各式的值:(1) (2)十八、解答题18求下列各式中x的值(1)4x264;(2)3(x1)3+240十九、解答题19学习如何书写规范的证明过程,补充完整,并完成后面问题已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DEBA,AFDE求证:FDAC证明:DEBA(已知) BFD ( )又 AFDE (等量代换)FDCA( )模仿上面的证明过程,用另一种方法证明FDAC二十、解答题20如图,在平面直

5、角坐标系中,已知P(a,b)是ABC的边AC上一点,ABC经平移后点P的对应点为P1(a+6,b+2)(1)请画出上述平移后的A1B1C1,并写出点A1,C1的坐标;(2)写出平移的过程;(3)求出以A,C,A1,C1为顶点的四边形的面积二十一、解答题21阅读理解,即231121的整数部分为1,1的小数部分为2解决问题:已知a是3的整数部分,b是3的小数部分(1)求a,b的值;(2)求(a)3+(b+4)2的平方根,提示:()217二十二、解答题22小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长

6、方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E、END的数量关系为: ;(不需要证明)如图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数二十四、解答题24已知,点为平面内一点,于(1)如图1,点在两条平行线外

7、,则与之间的数量关系为_;(2)点在两条平行线之间,过点作于点如图2,说明成立的理由;如图3,平分交于点平分交于点若,求的度数二十五、解答题25如图,在中,与的角平分线交于点.(1)若,则 ;(2)若,则 ;(3)若,与的角平分线交于点,的平分线与的平分线交于点,的平分线与的平分线交于点,则 .【参考答案】一、选择题1A解析:A【分析】根据算术平方根的意义求解即可【详解】解:16的算术平方根为4,故选:A【点睛】本题考查了算术平方根,理解算术平方根的意义是解决问题的关键2B【分析】根据平移的定义,对选项进行分析,排除错误答案【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放

8、,投影,故D错误只有B选项为平移故选:B【点睛】解析:B【分析】根据平移的定义,对选项进行分析,排除错误答案【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放,投影,故D错误只有B选项为平移故选:B【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状大小和方向,注意平移是沿着一条直线方向移动,熟练运用平移的性质是解答本题的关键3A【分析】根据各象限内点的坐标特征解答即可【详解】解:在第一象限;在第二象限;在第三象限;在第四象限;故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一

9、象限;第二象限;第三象限;第四象限4B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案【详解】A、对顶角相等;真命题;B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题正确的命题叫做真命题,错误的命题叫做假命题5A【分析】过G作GMAB,根据平行线的性质可得2=5,6=4,进而可得FGC=2+4,再利用平行线的性质进行等量代换可得31=210,求

10、出1的度数,然后可得答案【详解】解:过G作GMAB,2=5,ABCD,MGCD,6=4,FGC=5+6=2+4,FG、CG分别为EFG,ECD的角平分线,1=2=EFG,3=4=ECD,E+2G=210,E+1+2+ECD=210,ABCD,ENB=ECD,E+1+2+ENB=210,1=E+ENB,1+1+2=210,31=210,1=70,EFG=270=140故选:A【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等6D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可【详解】1的立方根为1,错误;4的平方根为2,正确;8的立方根是

11、2,正确;的算术平方根是,正确;正确的是,故选:D【点睛】本题考查了平方根、算术平方根和立方根解题的关键是掌握平方根、算术平方根和立方根的定义7B【分析】利用平行线的性质,角平分线的定义即可解决问题【详解】解:,平分,故选:B【点睛】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第解析:A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体

12、乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解【详解】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:第一次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为 ,此时在BC边相遇,即第一次相遇点为(-1,1);第二次相遇物体甲与物体乙运动的路程和为 ,物体甲运动的路程为,物体乙运动的路程为,在DE边相遇,即第二次相遇点为(-1,-1);第三次相遇物体甲与物体乙运动的路程和为,物体甲运动的路程为,物体乙运动的路

13、程为,在A点相遇,即第三次相遇点为(2,0);此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1)故选:A【点睛】本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点九、填空题96【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛解析:6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【

14、详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键十、填空题10【分析】如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质解析:【分析】如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,PAQ=90,由

15、于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标【详解】解:如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,设直线y=x1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,1),OB=OC=1,OBC=45,PAB=45,P、Q关于直线y=x1对称,AP=AQ,PAB=QAB=45,PAQ=90,AQx轴,P(2,3),且当y=3时,3=x1,解得x=4,A(4,3),AD=3,PA=6=AQ,DQ=3,点Q的坐标是(4,3)故答案为:(4,3)【点睛】本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性

16、质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键十一、填空题11120【分析】由题意可知求出ABC+ACB=120,由BO平分ABC,CO平分ACB,可知OBC+OCB=ABC+ACB=60,所以BOC=180-OBC-OCB=解析:120【分析】由题意可知求出ABC+ACB=120,由BO平分ABC,CO平分ACB,可知OBC+OCB=ABC+ACB=60,所以BOC=180-OBC-OCB=120.【详解】A=60,ABC+ACB=120,BO平分ABC,CO平分ACB,OBC=ABC,OCB=ACB,OBC+OCB=ABC+ACB=60,BOC=180-OBC-OCB

17、=120故答案为120【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理十二、填空题1265【分析】根据平行线的性质可得4的度数,再根据三角形外角的性质,即可求解【详解】解:如图:a/b,150,4150,2115,23+4,解析:65【分析】根据平行线的性质可得4的度数,再根据三角形外角的性质,即可求解【详解】解:如图:a/b,150,4150,2115,23+4,3241155065故答案为:65【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键十三、填空题1370【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF

18、,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140解析:70【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140,DEF70,四边形ABCD是长方形,ADBC,EFBDEF70故答案为:70【点睛】考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出DEFD1EF解答十四、填空题14255 【分析】根据运算过程得出,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案【详解】解:,对144只需进行3次操作解

19、析:255 【分析】根据运算过程得出,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案【详解】解:,对144只需进行3次操作后变为1,对255只需进行3次操作后变为1,从后向前推,找到需要4次操作得到1的最小整数, , ,对256只需进行4次操作后变为1,只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:3,255【点睛】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力十五、填空题15或【详解】【分析】分x0,0x3,x3三种情况分别讨论即可得.【详解】当x0时,2x0,x-30,由题意则有-2x-(x-3)=5

20、,解得:x=,当0x3时,2x0,x-3解析:或【详解】【分析】分x0,0x3,x3三种情况分别讨论即可得.【详解】当x0时,2x0,x-30,由题意则有-2x-(x-3)=5,解得:x=,当0x3时,2x0,x-30,x-30,由题意则有2x+x-3=5,解得:x=3(不合题意,舍去),综上,x的值为2或,故答案为2或.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.十六、填空题16【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此

21、时,解析:【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,甲走过的路程为,相遇坐标为,第二次相遇又用时间为(秒),甲又走过的路程为,相遇坐标为,第3次相遇时在点A处,则以后3的倍数次相遇都在点A处,第2021次相遇地点与第2次相遇地点的相同,第2021次相遇地点的坐标为故填:【点睛】此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点十七、解答题17(1);

22、(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考解析:(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键十八、解答题18(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2

23、)3(x-1)解析:(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)3+24=0,3(x-1)3=-24,(x-1)3=-8,x-1=-2,x=-1【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解十九、解答题19(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行解析:(1)FDE,两直线平行,内错角相等; A

24、,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等和内错角相等两直线平行求解即可【详解】(1)证明:DEBA(已知) BFDFDE(两直线平行,内错角相等)又 AFDEABFD,(等量代换)FDCA(同位角相等,两直线平行)故答案为:FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行 (2)证明:DEBA(已知),ADEC(两直线平行,同位角相等),又 AFDE(已知),FDEDEC(等量代换),FDCA;(内错角相等,两直线平行)【点睛】本题主要考查了平行线的性质与判定,

25、解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)图见详解;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14【分析】(1)根据点P的对应点P1(a+6,b+2)可分别解析:(1)图见详解;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14【分析】(1)根据点P的对应点P1(a+6,b+2)可分别得出A、B、C的对应点A1,B1,C1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积【详解】解

26、:(1)由点P的对应点P1(a+6,b+2)可得如图所示图象:由图象可得;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)连接,如图所示:点,点在同一条直线上,且与x轴平行,【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键二十一、解答题21(1)a1,b4;(2)4【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根【详解】解:(1),45,132,解析:(1)a1,b4;(2)4【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根【详解】解:(1),

27、45,132,a1,b4;(2)(a)3+(b+4)2(1)3+(4+4)21+1716,(a)3+(b+4)2的平方根是:4【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出45是解题关键二十二、解答题22(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的

28、边长为a cma2=400又a0a=20又要裁出的长方形面积为300cm2若以原正方形纸片的边长为长方形的长,则长方形的宽为:30020=15(cm)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)长方形纸片的长宽之比为3:2设长方形纸片的长为3xcm,则宽为2xcm6x 2=300x 2=50又x0x =长方形纸片的长为又202即:20小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作F

29、HAB解析:(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,F

30、HCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFE

31、NNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键二十四、解答题24(1)A+C=90;(2)见解析;105【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BGDM,根据平行线找角的联系即可求解;先过点B作BG解析:(1)A+C=90;(2)见解析;105【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BGDM,根据平行线找角的联系即可求解;先过点B作BGDM,根据角平分线的定义,得出ABF=GBF,再设DBE=,ABF=,根据CBF+BFC+

32、BCF=180,可得2+3+3+=180,根据ABBC,可得+2=90,最后解方程组即可得到ABE=15,进而得出EBC=ABE+ABC=15+90=105【详解】解:(1)如图1,AM与BC的交点记作点O,AMCN,C=AOB,ABBC,A+AOB=90,A+C=90;(2)如图2,过点B作BGDM,BDAM,DBBG,DBG=90,ABD+ABG=90,ABBC,CBG+ABG=90,ABD=CBG,AMCN,BGDM, C=CBG,ABD=C;如图3,过点B作BGDM,BF平分DBC,BE平分ABD,DBF=CBF,DBE=ABE,由(2)知ABD=CBG,ABF=GBF,设DBE=,A

33、BF=,则ABE=,ABD=2=CBG,GBF=AFB=,BFC=3DBE=3,AFC=3+,AFC+NCF=180,FCB+NCF=180,FCB=AFC=3+,BCF中,由CBF+BFC+BCF=180得:2+3+3+=180,ABBC,+2=90,=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导余角和补角计算的应用,常常与等式的性质、等量代换相关联解题时注意方程思想的运用二十五、解答题25(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的

34、性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平解析:(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平分线,用n的代数式表示出OBC与OCB的和,再根据三角形的内角和定理求出BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)A=40,ABC+ACB=140,点O是AB故答案为:110;C与ACB的角平分线的交点,OBC+OCB=70,BOC=110(2)A=n,ABC+ACB=180-n,BO、CO分别是ABC与ACB的角平分线,OBC+OCBABC+ACB(ABC+ACB)(180n)90n,BOC180(OBC+OCB)90+n故答案为:(90+n);(3)由(2)得O90+n,ABO的平分线与ACO的平分线交于点O1,O1BCABC,O1CBACB,O1180(ABC+ACB)180(180A)180+n,同理,O2180+n,On180+ n,O2017180+n,故答案为:90+n【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服