资源描述
人教五年级下册数学期末解答考试试卷(含解析)
1.如图:
杨树:○○○○○○
松树:○○○○○○○○○○○○
(1)松树的棵数是杨树的几倍?
(2)杨树的棵数是松树的几分之几?
2.明明上半身长45cm,身高是105cm,明明的上半身长是下半身长的几分之几?
3.甲队6天共修路5千米,乙队每天修路千米,甲队比乙队平均每天少修路多少千米?
4.五(9)班的劳动课上,萝卜苗移栽比赛开始了:小星8分移栽了5株幼苗,小甜9分移栽了7株,小然4分移栽了3株。谁的移栽速度最快?(写出解答过程)
5.(1)填表。
a
30
7
8
15
6
1
b
15
13
12
10
9
13
a与b的乘积
450
91
96
150
a与b的最大公因数
15
1
4
a与b的最小公倍数
30
91
24
(2)观察比较a与b的乘积与最大公因数和最小公倍数的关系,你发现了什么?将发现的规律写下来。
(3)根据上面的发现,如果a与b的积是300,a与b的最大公因数是5,那么a与b的最小公倍数是( )。
6.23路公共汽车每6分钟发车一次,9路公共汽车每8分钟发车一次,这两路公共汽车同时发车后,过多少分钟两路车再第二次同时发车?
7.小明和爸爸一起去文体广场散步,爸爸走一圈6分钟,小明走一圈8分钟。他们6:30从同一地点同向而行,什么时候在出发地点再一次相遇?这时爸爸和小明各走了多少圈?
8.学校有一面宣传墙,墙面用四种不同颜色的瓷砖铺满,四种颜色恰好铺成一个正方形。每块瓷砖的长20厘米,宽15厘米,铺满这面墙至少需要多少块砌砖?
9.有一块布料,做上衣用去米,做裤子用去米,还剩米,这块布料共有多少米?
10.小芳做数学作业用了小时,做语文作业用了小时。小芳做这两项作业一共用了多少时间?
11.农民伯伯给果树浇水,第一天上午浇了所有果树的,下午浇了所有果树的,剩下的第二天下午要浇完。
(1)第一天一共浇了所有果树的几分之几?
(2)第二天下午要浇几分之几?
12.筑路队修一条公路,第一周修了千米,比第二周少修了千米。两周一共修了多少千米?
13.下图是一个密封的长方体容器,长20厘米,宽10厘米,高40厘米,里面水深32厘米。如果以这个容器的前面为底放在桌上。(容器的厚度忽略不计)
(1)此时水深多少厘米?
(2)此时水与容器接触的面积是多少平方厘米?
14.一个花坛(如图),高0.7米,底面是边长1.2米的正方形,四周用砖砌成,厚度是0.2米,中间填满泥土。
(1)这个花坛占地多少平方米?
(2)用泥土填满这个花坛,大约需要泥土多少立方米?
(3)做这样一个花坛,四周大约需要砖多少平方米?
15.一个无盖长方体的铁皮水槽,长10分米,宽8分米,高6分米。(铁皮厚度忽略不计)
(1)做这个水槽至少需要铁皮多少平方分米?
(2)这个水槽最多可以盛水多少升?
16.李大爷要做一个无盖长方体鱼缸。请观察下图,解答问题。(单位:dm)
(1)做成这个缸要多少玻璃?
(2)往做好的鱼缸内注入180升水,水深多少?(玻璃厚度忽略不计)
(3)往鱼缸里放入小鹅卵石和鱼,水面上升了6厘米,这些小鹅卵石和鱼的体积一共是多少?
17.用一个棱长是5分米的正方体实心铁块和一个长25分米、宽6分米、高5分米的长方体实心铁块熔铸成一个大一点儿的长方体实心铁块,这个长方体的横截面是边长为5分米的正方形,这个长方体的高是多少?
18.有两个长方体水槽,大水槽长为4分米,宽为3分米,小水槽长为3分米、宽为2分米。水槽中都盛有足够的水。有一块石头沉入大水槽后水面上升了3厘米,如果把这块石头投入小水槽,那么水面将上升几厘米?
19.一个鱼缸如下图所示。(单位:厘米。)(玻璃厚度忽略不计。)如果要把鱼缸加满水,还要再注入多少升水?
20.一个长方体的玻璃缸,从里面量长是20cm宽是15cm,高是10cm,缸里的水深8cm,将一块石头放入缸里完全浸没,溢出了100mL的水,这块石头的体积是多少立方厘米?
21.下面每个小方格代表1cm2。
(1)请以点O为长方形的一个顶点,画出一个面积是8cm2的长方形,标上图①。
(2)把图①绕点O按逆时针方向旋转90°,画出旋转后的图形,标上图②。
22.(1)画出将小鱼向上平移4格的图形。
(2)再画出把平移后的小鱼向左平移5格后的图形。
(3)观察对称轴的位置,画出小船的轴对称图形。
23.如图下图,小方格是边长1厘米的正方形。
(1)图中三角形ABC的面积是( )平方厘米,三角形ABC个顶点的位置分别是A( )、B( )、C( )。
(2)把三角形ABC向左平移3格后的图形。
24.想一想,画一画。
①在表中先画出A(3,5)、B(6,0)、C(2,1)三个点,再用线把这三个点连接成一个三角形。
②将得到的三角形向右平移5格,画出这个新三角形A1B1C1。
③新三角形A1B1C1的三个顶点用数对表示,A1点是( ),B1点是( ),C1点是( )。
25.下图是用24个棱长2cm的小正方体粘合而成的几何体。
(1)在A、B、C三个缺口中选一处补入一个小正方体,补在( ) 处,能使这个几何体的表面积保持不变。
(2)在这三个缺口处都补入一个小正方体,这个几何体的表面积会增加还是会减少?增加(或减少)多少cm2?
26.下面是武汉市和成都市某月同一周的气温统计表。
(1)根据表中数据绘制折线统计图。
(2)你能判断这是哪个季节吗?说说你的理由。
27.下面是某病人的体温变化情况统计图,看图回答下面的问题。
某病人体温变化情况统计图
体温/摄氏度2018年12月
(1)医生每隔( )小时给病人测量一次体温。
(2)4月7日6时的体温是( ),4月9日6时的体温是( )。
(3)病人的情况趋于好转还是恶化?
28.为了参加学校运动会的1分钟跳绳比赛,冬冬和平平提前10天进行训练,每天测试成绩如图:
(1)他们两人第1天的成绩相差( )个,第10天的成绩相差( )个。
(2)第( )天到第( )天平平的成绩进步最快。
(3)你认为通过10天训练,谁的进步大一些?
1.(1)2倍
(2)
【分析】
(1)要计算松树的棵数是杨树的几倍,就用松树的棵数除以杨树的棵数;
(2)要计算杨树的棵数是松树棵数的几分之几,就用杨树的棵数除以松树的棵数,结果要化为最简分数。
【详
解析:(1)2倍
(2)
【分析】
(1)要计算松树的棵数是杨树的几倍,就用松树的棵数除以杨树的棵数;
(2)要计算杨树的棵数是松树棵数的几分之几,就用杨树的棵数除以松树的棵数,结果要化为最简分数。
【详解】
(1)12÷6=2
答:松树的棵数是杨树的2倍。
(2)==
答:杨树的棵数是松树的。
【点睛】
结合象形图所表示的数目,运用分数与除法的关系,求得两种树木棵数之间的倍份关系,是比较基础的题目。
2.【分析】
根据题意,先求出下半身的长,用身高减去上半身长,再用上半身的长除以下半身的长,约分即可解答。
【详解】
45÷(105-45)
=45÷60
=
答:明明上半身长是下半身长的。
【点睛】
解析:
【分析】
根据题意,先求出下半身的长,用身高减去上半身长,再用上半身的长除以下半身的长,约分即可解答。
【详解】
45÷(105-45)
=45÷60
=
答:明明上半身长是下半身长的。
【点睛】
本题考查求一个数占另一个数的几分之几,用除法计算。
3.千米
【分析】
根据工作总量÷工作时间=工作效率,先求出甲队平均每天修的长度,用乙队每天修的长度-甲队每天修的长度即可。
【详解】
-5÷6
=-
=-
=(千米)
答:甲队比乙队平均每天少修路千米
解析:千米
【分析】
根据工作总量÷工作时间=工作效率,先求出甲队平均每天修的长度,用乙队每天修的长度-甲队每天修的长度即可。
【详解】
-5÷6
=-
=-
=(千米)
答:甲队比乙队平均每天少修路千米。
【点睛】
异分母分数相加减,先通分再计算。
4.小甜
【分析】
分别用幼苗株数除以时间求出三人的移栽速度,再进行比较。
异分母分数比较大小,先通分成分母相同的分数,再比较。
【详解】
小星:5÷8=(株)
小甜:7÷9=(株)
小然:3÷4=
解析:小甜
【分析】
分别用幼苗株数除以时间求出三人的移栽速度,再进行比较。
异分母分数比较大小,先通分成分母相同的分数,再比较。
【详解】
小星:5÷8=(株)
小甜:7÷9=(株)
小然:3÷4=(株)
答:小甜的移栽速度最快。
【点睛】
本题考查分数与除法的关系、分数大小比较的应用。熟练掌握通分的方法是解题的关键。
5.(1)将详解
(2)a与b的乘积等于它们最大公因数与最小公倍数的乘积
(3)60
【分析】
(1)根据:积=因数×因数,求出乘积;将a和b分解因数,公有质因数是最大公因数和公有质因数与独有质因数乘积
解析:(1)将详解
(2)a与b的乘积等于它们最大公因数与最小公倍数的乘积
(3)60
【分析】
(1)根据:积=因数×因数,求出乘积;将a和b分解因数,公有质因数是最大公因数和公有质因数与独有质因数乘积是最小公倍数;
(2)将最大公因数与最小公倍数的乘积与a和b的乘积进行对比,从而得出规律;
(3)根据得到的规律,进行解答即可。
【详解】
(1)
a
30
7
8
15
6
1
b
15
13
12
10
9
13
a与b的乘积
450
91
96
150
54
13
a与b的最大公因数
15
1
4
5
3
1
a与b的最小公倍数
30
91
24
30
18
13
(2)a与b的乘积等于它们最大公因数与最小公倍数的乘积;
(3)300÷5=60
a与b的最小公倍数是60。
【点睛】
通过观察表格,得出规律,两个数的积=最大公因数×最小公倍数;再根据这个规律,进行解答问题。
6.24分钟
【分析】
两路公共汽车同时发车后,要求过多少分钟两路车第二次同时发车,其实就是求6和8的最小公倍数。
【详解】
6=2×3,
8=2×2×2,
6和8的最小公倍数是:2×2×2×3=24;
解析:24分钟
【分析】
两路公共汽车同时发车后,要求过多少分钟两路车第二次同时发车,其实就是求6和8的最小公倍数。
【详解】
6=2×3,
8=2×2×2,
6和8的最小公倍数是:2×2×2×3=24;
答:这两路公共汽车同时发车后,过24分钟两路车再第二次同时发车。
【点睛】
本题考查的是最小公倍数的应用,理解题意,明确此题就是求两个数的最小公倍数是解答此题的关键。
7.6:54;爸爸走了4圈,小明走了3圈
【分析】
求出爸爸和小明走一圈需要时间的最小公倍数,是同一地点再一次相遇需要的时间,用起点时间+经过时间=终点时间,求出再一次相遇的时刻;用需要的时间分别除以两
解析:6:54;爸爸走了4圈,小明走了3圈
【分析】
求出爸爸和小明走一圈需要时间的最小公倍数,是同一地点再一次相遇需要的时间,用起点时间+经过时间=终点时间,求出再一次相遇的时刻;用需要的时间分别除以两人走一圈需要的时间,分别求出两人走的圈数即可。
【详解】
6=2×3
8=2×2×2
2×2×2×3=24(分钟)
6:30+24分钟=6:54
24÷6=4(圈)
24÷8=3(圈)
答:6:54在出发地点再一次相遇,这时爸爸走了4圈,小明走了3圈。
【点睛】
全部公有的质因数和各自独立的质因数,它们连乘的积就是这几个数的最小公倍数。
8.12块
【分析】
据题意知,这些瓷砖要铺成一个正方形,求铺满这面墙至少需要砌砖的数量,就是求20和15的最小公倍数,就是铺成正方形的边长,再用正方形的面积除以瓷砖的面积,即可求出瓷砖的数量。
【详解
解析:12块
【分析】
据题意知,这些瓷砖要铺成一个正方形,求铺满这面墙至少需要砌砖的数量,就是求20和15的最小公倍数,就是铺成正方形的边长,再用正方形的面积除以瓷砖的面积,即可求出瓷砖的数量。
【详解】
20=2×2×5
15=3×5
20和15的最小公倍数是2×2×3×5
=4×3×5
=12×5
=60
(60×60)÷(20×15)
=3600÷300
=12(块)
答:铺满这面墙至少需要12块砌砖。
【点睛】
掌握求最小公倍数的方法以及正方形的面积公式,这是解决此题的关键。
9.米
【分析】
布料的总米数=做上衣用去的米数+做裤子用去的米数+还剩的米数,据此解答。
【详解】
++
=
= (米)
答:这块布料共有米。
【点睛】
此题主要考查了异分母分数的加减法的应用,计算
解析:米
【分析】
布料的总米数=做上衣用去的米数+做裤子用去的米数+还剩的米数,据此解答。
【详解】
++
=
= (米)
答:这块布料共有米。
【点睛】
此题主要考查了异分母分数的加减法的应用,计算时用分母的最小公倍数作公分母计算即可。
10.小时
【分析】
根据异分母分数加减法的计算方法,将做数学作业和语文作业的时间加起来即可。
【详解】
+
=+
=(小时)
答:小芳做这两项作业一共用了小时。
【点睛】
异分母分数相加减,先通分再计算
解析:小时
【分析】
根据异分母分数加减法的计算方法,将做数学作业和语文作业的时间加起来即可。
【详解】
+
=+
=(小时)
答:小芳做这两项作业一共用了小时。
【点睛】
异分母分数相加减,先通分再计算。
11.(1)
(2)
【分析】
(1)把第一天上午浇的量和下午浇的量相加,即+;
(2)把总量看作单位“1”,即用总量1减去第一天浇的量即可求出第二天下午浇了几分之几。
【详解】
(1)+=
答:第一天一
解析:(1)
(2)
【分析】
(1)把第一天上午浇的量和下午浇的量相加,即+;
(2)把总量看作单位“1”,即用总量1减去第一天浇的量即可求出第二天下午浇了几分之几。
【详解】
(1)+=
答:第一天一共浇了所有果树的。
(2)1-=
答:第二天下午要浇。
【点睛】
本题主要考查分数的加减法,要注意找准单位“1”。
12.千米
【分析】
由题意可知,第一周修了千米,比第二周少修了千米。两周一共修的路=第一周修的+第二周修的,据此可解答。
【详解】
+(+)
=+
=(千米)
答:两周一共修了千米。
【点睛】
本题考查
解析:千米
【分析】
由题意可知,第一周修了千米,比第二周少修了千米。两周一共修的路=第一周修的+第二周修的,据此可解答。
【详解】
+(+)
=+
=(千米)
答:两周一共修了千米。
【点睛】
本题考查异分母的加法,掌握通分的方法是关键。
13.(1)8厘米
(2)1760平方厘米
【分析】
(1)根据长方体的体积公式:长×宽×高,把数代入求出水的体积,即20×10×32,由于以这个容器的前面为底放在桌面上,此时的底面积是:40×20,用水
解析:(1)8厘米
(2)1760平方厘米
【分析】
(1)根据长方体的体积公式:长×宽×高,把数代入求出水的体积,即20×10×32,由于以这个容器的前面为底放在桌面上,此时的底面积是:40×20,用水的体积除以底面积即可求出水深。
(2)水与容器接触的面积就是求长方体5个面的面积和,即根据公式:长×宽+(长×高+宽×高)×2,此时长:40厘米,宽20厘米,高是第一问求的水深,把数代入即可求解。
【详解】
(1)20×10×32÷(40×20)
=200×32÷800
=6400÷800
=8(厘米)
答:此时水深8厘米。
(2)40×20+(40×8+20×8)×2
=800+(320+160)×2
=800+480×2
=800+960
=1760(平方厘米)
答:此时水与容器接触的面积是1760平方厘米。
【点睛】
本题主要考查长方体的表面积以及体积公式,熟练掌握它的公式并灵活运用。
14.(1)1.44平方米
(2)0.448立方米
(3)3.36平方米
【分析】
(1)由于底面是边长为1.2米的正方形,则占地面积就是底面面积,即1.2×1.2,算出结果即可。
(2)由于填满泥土,则
解析:(1)1.44平方米
(2)0.448立方米
(3)3.36平方米
【分析】
(1)由于底面是边长为1.2米的正方形,则占地面积就是底面面积,即1.2×1.2,算出结果即可。
(2)由于填满泥土,则求这个花坛的容积即可,由于砖的厚度是0.2米,则内部的长:1.2-0.2×2=0.8米,内部的宽:1.2-0.2×2=0.8米,内部的高:0.7米,根据长方体的体积公式:长×宽×高,把数代入公式即可求解;
(3)在花坛的四周砌砖,则求花坛四周的表面积即可,由于底面是正方形,则四周的面积大小相同,即用1.2×0.7×4,算出结果即可。
【详解】
(1)1.2×1.2=1.44(平方米)
答:这个花坛占地1.44平方米。
(2)(1.2-0.2×2)×(1.2-0.2×2)×0.7
=0.8×0.8×0.7
=0.64×0.7
=0.448(立方米)
答:大约需要泥土0.448立方米。
(3)1.2×0.7×4
=0.84×4
=3.36(平方米)
答:四周大约需要砖3.36平方米
【点睛】
求花坛的容积时,要用花坛的长和宽分别减去两个砖厚度求出内部长方体的长和宽;熟练掌握长方体的表面积和体积公式。
15.(1)296平方分米
(2)480升
【分析】
(1)做这个水槽需要铁皮,相当于求这个水槽的表面积,根据无盖长方体的表面积公式:长×宽+(长×高+宽×高)×2,把数代入公式即可求解。
(2)根据长方
解析:(1)296平方分米
(2)480升
【分析】
(1)做这个水槽需要铁皮,相当于求这个水槽的表面积,根据无盖长方体的表面积公式:长×宽+(长×高+宽×高)×2,把数代入公式即可求解。
(2)根据长方体的体积公式:长×宽×高,把数代入求出水槽的体积,之后再转换单位即可。
【详解】
(1)10×8+(10×6+8×6)×2
=80+(60+48)×2
=80+108×2
=80+216
=296(平方分米)
答:做这个水槽至少需要铁皮296平方分米。
(2)10×8×6
=80×6
=480(立方分米)
480立方分米=480升
答:这个水槽最多可以盛水480升。
【点睛】
本题主要考查长方体的表面积和体积的公式,熟练掌握它们的公式并灵活运用。
16.(1)213dm2
(2)4dm
(3)27dm3
【分析】
通过观察长方体的展开图,可知长方体的长是9dm,宽是5dm,高是6dm。
(1)要求出需要多少玻璃,则求出五个面的面积的和即可。
(2)
解析:(1)213dm2
(2)4dm
(3)27dm3
【分析】
通过观察长方体的展开图,可知长方体的长是9dm,宽是5dm,高是6dm。
(1)要求出需要多少玻璃,则求出五个面的面积的和即可。
(2)用水的体积除以长方体的底面积即可求出水深。
(3)小鹅卵石和鱼的体积等于上升水面的体积,所以求出上升水面的体积即可。
【详解】
(1)2×(9×6+5×6)+9×5
=2×(54+30)+45
=2×84+45
=168+45
=213(平方分米)
答:做成这个缸要213平方分米的玻璃。
(2)180升=180立方分米
180÷9÷5
=20÷5
=4(分米)
答:水深4分米。
(3)6厘米=0.6分米
9×5×0.6
=45×0.6
=27(立方分米)
答:这些小鹅卵石和鱼的体积一共是27立方分米。
【点睛】
本题考查长方体的体积公式,熟记公式是解题的关键。
17.35分米
【分析】
根据题意,正方体实心铁块和长方体实心铁块的体积之和等于熔铸成的大一点儿长方体实心铁块的体积。正方体的体积=棱长×棱长×棱长,长方体的体积=长×宽×高,据此求出原来的两个铁块体积之
解析:35分米
【分析】
根据题意,正方体实心铁块和长方体实心铁块的体积之和等于熔铸成的大一点儿长方体实心铁块的体积。正方体的体积=棱长×棱长×棱长,长方体的体积=长×宽×高,据此求出原来的两个铁块体积之和,再除以熔铸成的长方体的长和宽即可求出高。
【详解】
5×5×5+25×6×5
=125+750
=875(立方分米)
875÷5÷5=35(分米)
答:这个长方体的高是35分米。
【点睛】
立体图形形状改变后,体积不变。
18.6厘米
【解析】
【详解】
3厘米=0.3分米
4×3×0.3÷(3×2)=0.6(分米)=6(厘米)
解析:6厘米
【解析】
【详解】
3厘米=0.3分米
4×3×0.3÷(3×2)=0.6(分米)=6(厘米)
19.64升
【分析】
根据题图可知,还需要再注入高度为50-30=20厘米的水,再根据“长方体体积=长×宽×高”求出需要注入水的体积即可。
【详解】
80×40×(50-30)
=3200×20
=64
解析:64升
【分析】
根据题图可知,还需要再注入高度为50-30=20厘米的水,再根据“长方体体积=长×宽×高”求出需要注入水的体积即可。
【详解】
80×40×(50-30)
=3200×20
=64000(立方厘米);
64000立方厘米=64升;
答:如果要把鱼缸加满水,还要再注入64升水。
【点睛】
熟练掌握长方体体积的计算公式是解答本题的关键。
20.700cm3
【分析】
由题意得:缸里的水深8cm而玻璃缸的高是10cm,则水面上升了2cm,石块的体积等于上升的水的体积加溢出水的体积,根据长方体的体积公式V=abh,即可列式解答。
【详解】
水
解析:700cm3
【分析】
由题意得:缸里的水深8cm而玻璃缸的高是10cm,则水面上升了2cm,石块的体积等于上升的水的体积加溢出水的体积,根据长方体的体积公式V=abh,即可列式解答。
【详解】
水面上升的体积:20×15×(10-8)
=300×2
=600(立方厘米)
100ml=100立方厘米
600+100=700(立方厘米)
答:这块石头的体积是700立方厘米。
【点睛】
本题考查求不规则物体的体积,明确石块的体积应等于水上升的体积加溢出水的体积是解题的关键。
21.见详解
【分析】
(1)画出一个面积是8cm2的长方形,长和宽可以是4厘米和2厘米,答案不唯一;
(2)旋转不改变图形的形状和大小,只改变位置。
【详解】
(1)、(2)作图如下:
【点睛】
本题
解析:见详解
【分析】
(1)画出一个面积是8cm2的长方形,长和宽可以是4厘米和2厘米,答案不唯一;
(2)旋转不改变图形的形状和大小,只改变位置。
【详解】
(1)、(2)作图如下:
【点睛】
本题考查长方形面积、旋转,解答本题的关键是掌握旋转的画法。
22.见详解
【分析】
(1)将小鱼的各个顶点向上平移4格,然后连线即可。
(2)在(1)的基础上再将小鱼向左平移5个即可。
(3)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴
解析:见详解
【分析】
(1)将小鱼的各个顶点向上平移4格,然后连线即可。
(2)在(1)的基础上再将小鱼向左平移5个即可。
(3)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的另一边画出左图的对称点,依次连结即可。
【详解】
由分析可知,如图所示:
【点睛】
本题是考查作轴对称图形,关键是把对称点的位置画正确。
23.(1)3,A(3,1)B(6,4)C(4,4)
(2)见详解
【分析】
三角形的面积=底×高÷2,数对先说列再说行;平移时找到三角形三个顶点平移之后,再连接平移后的三个顶点。
【详解】
(1)2×3
解析:(1)3,A(3,1)B(6,4)C(4,4)
(2)见详解
【分析】
三角形的面积=底×高÷2,数对先说列再说行;平移时找到三角形三个顶点平移之后,再连接平移后的三个顶点。
【详解】
(1)2×3÷2=6÷2=3(平方厘米)
A(3,1)B(6,4)C(4,4)
(2)
【点睛】
本题考查用数对表示数、平移、三角形面积,解答本题的关键是熟练掌握这些知识点。
24.①②见详解;
③(8,5),(11,0),(7,1)
【分析】
①③用数对表示位置时,通常把竖排叫列,横排叫行。一般情况下,确定第几列时从左往右数,确定第几行时从前往后数。表示列的数在前,表示行的数
解析:①②见详解;
③(8,5),(11,0),(7,1)
【分析】
①③用数对表示位置时,通常把竖排叫列,横排叫行。一般情况下,确定第几列时从左往右数,确定第几行时从前往后数。表示列的数在前,表示行的数在后,中间用逗号“,”隔开,数对加上小括号。
②作平移后的图形步骤:找点-找出构成图形的关键点;定方向、距离-确定平移方向和平移距离;画线-过关键点沿平移方向画出平行线;定点-由平移的距离确定关键点平移后的对应点的位置;连点-连接对应点。
【详解】
①②
③新三角形A1B1C1的三个顶点用数对表示,A1点是(8,5),B1点是(11,0),C1点是(7,1)。
【点睛】
用有顺序的两个数表示出一个确定的位置就是数对。给出物体在平面图上的数对时,就可以确定物体所在的位置了。
25.(1)B
(2)减少;减少24cm2
【分析】
(1)在A、B、C三个缺口中分别补入一个小正方体,对比补入前后表面积是否有改变,选出表面积保持不变的一处即可;
(2)在这三个缺口处都补入一个小正方
解析:(1)B
(2)减少;减少24cm2
【分析】
(1)在A、B、C三个缺口中分别补入一个小正方体,对比补入前后表面积是否有改变,选出表面积保持不变的一处即可;
(2)在这三个缺口处都补入一个小正方体,对比补入前后表面积的变化情况,数出相差的面,计算出相差面的面积即可。
【详解】
据分析知:(1)补在B处,能使这个几何体的表面积保持不变;
(2)在这三个缺口处都补入一个小正方体后,少了6个正方形的面,即表面积减少了;减少的面积:2×2=4(平方厘米),6×4=24(平方厘米)。
答:这个几何体的表面积会减少,减少24cm2。
【点睛】
具有一定的空间想象能力,并能理解好正方体的表面积,这是解决此题的关键。
26.(1)见详解;
(2)从统计图中,可以判断这是夏季,因为气温比较高。
【分析】
(1)根据统计表中的信息先描点,再依次连接各个点即可;
(2)观察统计表中的数据,联系生活实际,这些数据都比较高,应属
解析:(1)见详解;
(2)从统计图中,可以判断这是夏季,因为气温比较高。
【分析】
(1)根据统计表中的信息先描点,再依次连接各个点即可;
(2)观察统计表中的数据,联系生活实际,这些数据都比较高,应属于夏季。
【详解】
(1)据分析可作图如下:
(2)从统计图中,可以判断这是夏季,因为气温比较高。
【点睛】
具有一定的生活经验,掌握画折线统计图的方法,先描点再连线,这是解决此题的关键。
27.(1)6 (2)39.5摄氏度 37摄氏度 (3)好转
【分析】
(1)每天测量体温的时间分别是0时,6时,12时,18时,是每个6小时测量一次体温;
(2)折线的最高点就是体温最高
解析:(1)6 (2)39.5摄氏度 37摄氏度 (3)好转
【分析】
(1)每天测量体温的时间分别是0时,6时,12时,18时,是每个6小时测量一次体温;
(2)折线的最高点就是体温最高,最低点就是体温最低;
(3)人体的正常体温是37℃,病人后来的体温稳定在这一水平线上,说明病情好转。
【详解】
(1)从图上可以看出,护士每隔6小时给病人量一次体温。
(2)这个病人的最高体温是39.5摄氏度;最低体温是36.8摄氏度。
(3)从体温情况来看,这个病人的病情是好转。
故答案为:(1)6小时 (2)39.5摄氏度 37摄氏度 (3)好转
【点睛】
本题考查了学生根据统计图的内容会分析解决回答问题。
28.(1)1;2
(2)6;7
(3)见详解
【分析】
(1)用第1天两个人跳的个数相减即可;用第10天两人跳的个数相减即可;
(2)通过统计图观察,找出两天成绩相差的最多(或者直线越趋近于竖直),即进
解析:(1)1;2
(2)6;7
(3)见详解
【分析】
(1)用第1天两个人跳的个数相减即可;用第10天两人跳的个数相减即可;
(2)通过统计图观察,找出两天成绩相差的最多(或者直线越趋近于竖直),即进步的最快。
(3)两个人的成绩都呈上升趋势,通过统计图观察谁上升的趋势比较明显即可,(说法合理即可)
【详解】
(1)第1天:153-152=1(个)
第10天:167-165=2(个)
(2)通过折线统计图观察,可以知道第6天到第7天平平的成绩进步最快。
(3)我认为平平进步的快。
因为平平的成绩只有第4天到第5天降低,其他时候都是提升状态。(答案合理即可)
【点睛】
本题主要考查复式折线统计图的分析,学会分析统计图的数据并灵活运用。
展开阅读全文