资源描述
人教版中学七年级下册数学期末测试题(含答案)
一、选择题
1.如图,直线a,b被直线c所截,∠1的同旁内角是( )
A.∠2 B.∠3 C.∠4 D.∠5
2.下列图案中,是通过下图平移得到的是( )
A. B. C. D.
3.如果点P(12m,m)的横坐标与纵坐标互为相反数,则点P一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线平行:④同旁内角互补.其中错误的有( )
A.1个 B.2个 C.3个 D.4个
5.把一块直尺与一块含的直角三角板如图放置,若,则的度数为( )
A. B. C. D.124°
6.有个数值转换器,原理如图所示,当输入为27时,输出的值是( )
A.3 B. C. D.32
7.一副直角三角尺如图摆放,点D在BC的延长线上,点E在AC上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是( )
A.10° B.15° C.20° D.25°
8.如图,动点 P在平面直角坐标系中按图中箭头所示方向运动,第 1 次从原点运 动到点(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2),…, 按这样的运动规律,经过第 2021 次运动后,动点 P的坐标是( )
A.(2020,1) B.(2020,2) C.(2021,1) D.(2021,2)
九、填空题
9.100的算术平方根是_____.
十、填空题
10.已知点与点关于轴对称,那么点关于轴的对称点的坐标为__________.
十一、填空题
11.在△ABC中,若∠A=60°,点O是∠ABC和∠ACB角平分线的交点,则∠BOC=________.
十二、填空题
12.如图所示,直线AB,BC,AC两两相交,交点分别为A,B,C,点D在直线AB上,过点D作DE∥BC交直线AC于点E,过点E作EF∥AB交直线BC于点F,若∠ABC=50°,则∠DEF的度数___.
十三、填空题
13.如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_______.
十四、填空题
14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=.
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
十五、填空题
15.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为__.
十六、填空题
16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2020的坐标是______.
十七、解答题
17.(1)已知,求x的值;
(2)计算:.
十八、解答题
18.已知,,求下列各式的值:
(1);
(2).
十九、解答题
19.如图.试问、、有什么关系?
解:,理由如下:
过点作
则______( )
又∵,
∴____________( )
∴____________( )
∴( )
即____________
二十、解答题
20.如图,三角形在平面直角坐标系中.
(1)请写出三角形各点的坐标;
(2)求出三角形的面积;
(3)若把三角形向上平移2个单位,再向左平移1个单位得到三角形,在图中画出平移后三角形.
二十一、解答题
21.阅读下面文字,然后回答问题.
给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,﹣2.6的整数部分为﹣3,小数部分为.由此我们得到一个真命题:如果,其中是整数,且,那么,.
(1)如果,其中是整数,且,那么______,_______;
(2)如果,其中是整数,且,那么______,______;
(3)已知,其中是整数,且,求的值;
(4)在上述条件下,求的立方根.
二十二、解答题
22.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由.
二十三、解答题
23.已知直线,点P为直线、所确定的平面内的一点.
(1)如图1,直接写出、、之间的数量关系 ;
(2)如图2,写出、、之间的数量关系,并证明;
(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数.
二十四、解答题
24.[感知]如图①,,求的度数.
小乐想到了以下方法,请帮忙完成推理过程.
解:(1)如图①,过点P作.
∴(_____________),
∴,
∴________(平行于同一条直线的两直线平行),
∴_____________(两直线平行,同旁内角互补),
∴,
∴,
∴,即.
[探究]如图②,,求的度数;
[应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º.
(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示).
二十五、解答题
25.如图①,平分,⊥,∠B=450,∠C=730.
(1) 求的度数;
(2) 如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求 的度数;
(3) 如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.
【详解】
解: 直线a,b被直线c所截,∠1的同旁内角是∠2,
故选:A.
【点睛】
本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.
2.C
【分析】
根据平移的性质,即可解答.
【详解】
由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.
故选C
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变
解析:C
【分析】
根据平移的性质,即可解答.
【详解】
由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.
故选C
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键.
3.B
【分析】
互为相反数的两个数的和为0,求出m的值,再判断出所求点的横纵坐标的符号,进而判断点P所在的象限.
【详解】
解:∵点P(1-2m,m)的横坐标与纵坐标互为相反数
∴
解得m=1
∴1-2m=1-2×1=-1,m=1
∴点P坐标为(-1,1)
∴点P在第二象限
故选B.
【点睛】
本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
4.C
【分析】
根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可.
【详解】
解:①对顶角相等,原命题正确;
②过直线外一点有且只有一条直线与已知直线平行,原命题错误;
③在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;
④两直线平行,同旁内角互补,原命题错误.
故选:C.
【点睛】
本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键.
5.D
【分析】
根据角的和差可先计算出∠AEF,再根据两直线平行同旁内角互补即可得出∠2的度数.
【详解】
解:由题意可知AD//BC,∠FEG=90°,
∵∠1=34°,∠FEG=90°,
∴∠AEF=90°-∠1=56°,
∵AD//BC,
∴∠2=180°-∠AEF=124°,
故选:D.
【点睛】
本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键.
6.B
【分析】
利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得,为无理数符合题意,即为y值.
【详解】
根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得,为无理数.符合题意,即输出的y值为.
故答案选:B.
【点睛】
此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定.
7.B
【分析】
由∠B=∠EDF=90°,∠A=30°,∠F=45°,利用三角形内角和定理可得出∠ACB=60°,∠DEF=45°,由EF∥BC,利用“两直线平行,内错角相等”可得出∠CEF的度数,结合∠CED=∠CEF-∠DEF,即可求出∠CED的度数,此题得解.
【详解】
解:∵∠B=90°,∠A=30°,
∴∠ACB=60°.
∵∠EDF=90°,∠F=45°,
∴∠DEF=45°.
∵EF∥BC,
∴∠CEF=∠ACB=60°,
∴∠CED=∠CEF-∠DEF=60°-45°=15°.
故选:B.
【点睛】
本题考查了三角形内角和定理以及平行线的性质,牢记平行线的性质是解题的关键.
8.C
【分析】
分析点P的运动规律找到循环规律即可.
【详解】
解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,
因为2021=505×4+1,
所以,前505次循环运动点P
解析:C
【分析】
分析点P的运动规律找到循环规律即可.
【详解】
解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,
因为2021=505×4+1,
所以,前505次循环运动点P共向右运动505×4=2020个单位,剩余一次运动向右走1个单位,且纵坐标为1.
故点P坐标为(2021,1),
故选:C.
【点睛】
本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.
九、填空题
9.10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴=10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.
解析:10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴=10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.
十、填空题
10.【分析】
先将a,b求出来,再根据对称性求出坐标即可.
【详解】
根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.
P(2,﹣3)关于y轴对称的点(﹣2,﹣3)
故答案为: (﹣2,﹣
解析:
【分析】
先将a,b求出来,再根据对称性求出坐标即可.
【详解】
根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.
P(2,﹣3)关于y轴对称的点(﹣2,﹣3)
故答案为: (﹣2,﹣3).
【点睛】
本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键.
十一、填空题
11.120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=
解析:120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.
【详解】
∵∠A=60°,
∴∠ABC+∠ACB=120°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=∠ABC+∠ACB=60°,
∴∠BOC=180°-∠OBC-∠OCB=120°
故答案为120°
【点睛】
本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理
十二、填空题
12.130°.
【分析】
先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.
【详解】
解:∵DE∥BC,
∴∠ABC=∠ADE=50°(两直线平行,同位角相等),
∵E
解析:130°.
【分析】
先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.
【详解】
解:∵DE∥BC,
∴∠ABC=∠ADE=50°(两直线平行,同位角相等),
∵EF∥AB,
∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),
∴∠DEF=180°﹣50°=130°.
故答案为:130°.
【点睛】
本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.
十三、填空题
13.70
【分析】
由题意易图可得,由折叠的性质可得,然后问题可求解.
【详解】
解:由长方形可得:,
∵,
∴,
由折叠可得,
∴;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟
解析:70
【分析】
由题意易图可得,由折叠的性质可得,然后问题可求解.
【详解】
解:由长方形可得:,
∵,
∴,
由折叠可得,
∴;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.
十四、填空题
14.8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
十五、填空题
15.(-2,6)或(-2,0).
【分析】
根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.
【详解】
解:由点P(-2,3),PA∥y轴,PA=3,得
在P点
解析:(-2,6)或(-2,0).
【分析】
根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.
【详解】
解:由点P(-2,3),PA∥y轴,PA=3,得
在P点上方的A点坐标(-2,6),
在P点下方的A点坐标(-2,0),
故答案为:(-2,6)或(-2,0).
【点睛】
本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏.
十六、填空题
16.【分析】
先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.
【详解】
解:由题意得:点的坐标是,
点的坐标是,
点的坐标是,
点的坐标是,
归纳类推得:点的坐标是,其中为正整数,
因为
解析:
【分析】
先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.
【详解】
解:由题意得:点的坐标是,
点的坐标是,
点的坐标是,
点的坐标是,
归纳类推得:点的坐标是,其中为正整数,
因为,
所以点的坐标是,
故答案为:.
【点睛】
本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.
十七、解答题
17.(1)x=3或x=-1;(2)
【分析】
(1)根据平方根的性质求解;
(2)根据绝对值、算术平方根和立方根的性质求解.
【详解】
(1)解:∵;
∴
∴x=3或x=-1
(2)原式=
,
【
解析:(1)x=3或x=-1;(2)
【分析】
(1)根据平方根的性质求解;
(2)根据绝对值、算术平方根和立方根的性质求解.
【详解】
(1)解:∵;
∴
∴x=3或x=-1
(2)原式=
,
【点睛】
本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.
十八、解答题
18.(1)44;(2)48
【分析】
(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;
(2)将a2+b2与ab的值代入原式计算即可求出值.
【详解】
解:(1)把
解析:(1)44;(2)48
【分析】
(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;
(2)将a2+b2与ab的值代入原式计算即可求出值.
【详解】
解:(1)把两边平方得:,
把代入得:,
∴;
(2)∵,,
∴===48.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
十九、解答题
19.∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE
【分析】
过点作,则∠1,同理可以得到∠2,由此即可求解.
【详解】
解:,
解析:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE
【分析】
过点作,则∠1,同理可以得到∠2,由此即可求解.
【详解】
解:,理由如下:
过点作,
则∠1(两直线平行,内错角相等),
又∵,,
∴DE∥CF(平行于同一条直线的两直线平行),
∴∠2(两直线平行,内错角相等)
∴(等量代换)
即∠BCE,
故答案为:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE.
【点睛】
本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
二十、解答题
20.(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标
解析:(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标,连接对应线段即可.
【详解】
解:(1)根据平面直角坐标系中点的位置,可得:
,,;
(2)三角形的面积
;
(3)三角形向上平移2个单位,再向左平移1个单位得到三角形
可得,,,连接,三角形如图所示:
【点睛】
此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键.
二十一、解答题
21.(1)2,;(2)﹣3,;(3);(4)3
【分析】
(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;
(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;
(3)先估算的大小,
解析:(1)2,;(2)﹣3,;(3);(4)3
【分析】
(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;
(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;
(3)先估算的大小,分别求得的值,再代入绝对值中计算即可;
(4)根据前三问的结果,代入代数式求值,最后求立方根即可.
【详解】
(1),
,
,
,
故答案为:2,,;
(2)
,
,
,
故答案为:﹣3,;
(3),
,
,
,
,,
;
(4),
,
27的立方根为3,
即的立方根为3.
【点睛】
本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键.
二十二、解答题
22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸
解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸片的面积为()2+()2=36(cm2),
所以大正方形的边长为6cm,
设截出的长方形的长为3b cm,宽为2b cm,
则6b2=30,
所以b=(取正值),
所以3b=3=>,
所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.
【点睛】
本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.
二十三、解答题
23.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360
解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;
(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.
【详解】
解:(1)∠A+∠C+∠APC=360°
如图1所示,过点P作PQ∥AB,
∴∠A+∠APQ=180°,
∵AB∥CD,
∴PQ∥CD,
∴∠C+∠CPQ=180°,
∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;
(2)∠APC=∠A+∠C,
如图2,作PQ∥AB,
∴∠A=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠C=∠CPQ,
∵∠APC=∠APQ-∠CPQ,
∴∠APC=∠A-∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,
∵∠APC=30°,∠PAB=140°,
∴∠PCD=110°,
∵AB∥CD,
∴∠PQB=∠PCD=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵∠PEG=∠PEF,
∴∠PEG=∠FEG,
∵EH平分∠BEG,
∴∠GEH=∠BEG,
∴∠PEH=∠PEG-∠GEH
=∠FEG-∠BEG
=∠BEF
=55°.
【点睛】
此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
二十四、解答题
24.[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或
【分析】
[感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;
[探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;
[应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;
(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.
【详解】
解:[感知]如图①,过点P作PM∥AB,
∴∠1=∠AEP=40°(两直线平行,内错角相等)
∵AB∥CD,
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠2+∠PFD=180°(两直线平行,同旁内角互补),
∴∠PFD=130°(已知),
∴∠2=180°-130°=50°,
∴∠1+∠2=40°+50°=90°,即∠EPF=90°;
[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°,
∵AB∥CD,
∴PM∥CD,
∴∠PFC=∠MPF=120°,
∴∠EPF=∠MPF-∠MPE=120°-50°=70°;
[应用](1)如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-∠MGE=60°-25°=35°.
故答案为:35.
(2)当点A在点B左侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵平分平分,,
∴∠ABE=∠BEF=,∠CDE=∠DEF=,
∴∠BED=∠BEF+∠DEF=;
当点A在点B右侧时,
如图,故点E作EF∥AB,则EF∥CD,
∴∠DEF=∠CDE,∠ABG=∠BEF,
∵平分平分,,
∴∠DEF=∠CDE=,∠ABG=∠BEF=,
∴∠BED=∠DEF-∠BEF=;
综上:∠BED的度数为或.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.
二十五、解答题
25.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.
【分析】
(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE
解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.
【分析】
(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.
(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.
(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.
【详解】
(1)∵∠B=45°,∠C=73°,
∴∠BAC=62°,
∵AD平分∠BAC,
∴∠BAD=∠CAD=31°,
∴∠ADE=∠B+∠BAD=45°+31°=76°,
∵AE⊥BC,
∴∠AEB=90°,
∴∠DAE=90°-∠ADE=14°.
(2)同(1),可得,∠ADE=76°,
∵FE⊥BC,
∴∠FEB=90°,
∴∠DFE=90°-∠ADE=14°.
(3)的大小不变.=14°
理由:∵ AD平分∠ BAC,AE平分∠BEC
∴∠BAC=2∠BAD,∠BEC=2∠AEB
∵ ∠BAC+∠B+∠BEC+∠C =360°
∴2∠BAD+2∠AEB=360°-∠B-∠C=242°
∴∠BAD+∠AEB=121°
∵ ∠ADE=∠B+∠BAD
∴∠ADE=45°+∠BAD
∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°
【点睛】
本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.
展开阅读全文