收藏 分销(赏)

人教版七年级下册数学期末解答题培优含答案.doc

上传人:快乐****生活 文档编号:1914835 上传时间:2024-05-11 格式:DOC 页数:35 大小:1.38MB
下载 相关 举报
人教版七年级下册数学期末解答题培优含答案.doc_第1页
第1页 / 共35页
人教版七年级下册数学期末解答题培优含答案.doc_第2页
第2页 / 共35页
人教版七年级下册数学期末解答题培优含答案.doc_第3页
第3页 / 共35页
人教版七年级下册数学期末解答题培优含答案.doc_第4页
第4页 / 共35页
人教版七年级下册数学期末解答题培优含答案.doc_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、人教版七年级下册数学期末解答题培优含答案一、解答题1如图是一块正方形纸片(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm(2)若一圆的面积与这个正方形的面积都是2cm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“”或“”或“”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?2有一块面积为100cm2的正方形纸片(1)该正方形纸片的边长为 cm(直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长

2、宽之比为4:3小丽能用这块纸片裁剪出符合要求的纸片吗?3工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)4如图,在33的方格中,有一阴影正方形,设每一个小方格的边长为1个单位请解决下面的问题(1)阴影正方形的面积是_?(可利用割补法求面积)(2)阴影正方形的边长是_?(3)阴影正方形的边长介于哪两个整数之间?请说明理由5求下图的方格中阴影部分正方形面积与边长二、解答题6如图1,已知直线mn,AB 是一个平

3、面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数量关系,并说明理由7已知,ABCD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,

4、EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数8如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时

5、,直接写出BAC的度数和此时AD与AC之间的位置关系9如图,直线,点是、之间(不在直线,上)的一个动点(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数10如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的情形

6、,使?若存在,求出的度数;若不存在,请说明理由三、解答题11如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足(1)点的坐标为_;点的坐标为_(2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束的中点的坐标是,设运动时间为问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由(3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由12为了安全起

7、见在某段铁路两旁安置了两座可旋转探照灯如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视若灯转动的速度是每秒2度,灯转动的速度是每秒1度假定主道路是平行的,即,且(1)填空:_;(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯射线到达之前若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由13如图1,点O在上,射线交于点C,已知m,n满足:(1)试说明/的理由;(2)如图2,平分,平分

8、,直线、交于点E,则_;(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论14如图1,E点在BC上,AD,ABCD(1)直接写出ACB和BED的数量关系 ;(2)如图2,BG平分ABE,与CDE的邻补角EDF的平分线交于H点若E比H大60,求E;(3)保持(2)中所求的E不变,如图3,BM平分ABE的邻补角EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不变,请求值;若改变,请说理由15长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A射线自顺时针旋转至便立即回转,灯B射线自顺时针旋

9、转至便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是a/秒,灯B转动的速度是b/秒,且a、b满足假定这一带长江两岸河堤是平行的,即,且(1)求a、b的值;(2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达时运动停止,问A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达之前若射出的光束交于点C,过C作交于点D,则在转动过程中,与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围四、解答题16如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动(1)若BAO和ABO的平分

10、线相交于点Q,在点A,B的运动过程中,AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由(2)若AP是BAO的邻补角的平分线,BP是ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,P和C的大小是否会发生变化?若不发生变化,请求出P和C的度数;若发生变化,请说明理由17己知:如图,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ;(2)如图,若,作的平分线交于,交于,试说明; (3)如图,若,点在射线上运动,的平分线交的延长线于点,在点运动过

11、程中的值是否变化?若不变,求出其值;若变化,求出变化范围.18直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是BAP和ABM角的平分线,(1)点A、B在运动的过程中,ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出ACB的大小.(2)如图2,将ABC沿直线AB折叠,若点C落在直线PQ上,则ABO_,如图3,将ABC沿直线AB折叠,若点C落在直线MN上,则ABO_(3)如图4,延长BA至G,已知BAO、OAG的角平分线与BOQ的角平分线及其反向延长线交于E、F,则EAF ;在AEF中,如果有一个角

12、是另一个角的倍,求ABO的度数.19如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”(1)如图1,在中,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:在中,若,则是“准互余三角形”;若是“准互余三角形”,则;“准互余三角形”一定是钝角三角形其中正确的结论是_(填写所有正确说法的序号);(3)如图2,为直线上两点,点在直线外,且若是直线上一点,且是“准互余三角形”,请直接写出的度数20已知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED

13、的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 【参考答案】一、解答题1(1);(2);(3)不能;理由见解析【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(1);(2);(3)不能;理由见解析【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形

14、边长比较大小即可.【详解】解:(1)由已知AB21,则AB1,由勾股定理,AC;故答案为:.(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4;即C圆C正;故答案为:(3)不能;由已知设长方形长和宽为3xcm和2xcm长方形面积为:2x3x12解得x长方形长边为34他不能裁出【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.2(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算解析:(1

15、)10;(2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;故答案为:10;(2)长方形纸片的长宽之比为4:3,设长方形纸片的长为4xcm,则宽为3xcm,则4x3x90,12x290,x2,解得:x或x-(负值不符合题意,舍去),长方形纸片的长为2cm,56,102,小丽不能用这块纸片裁出符合要求的纸片【点睛】本题考查了算术平方根解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考

16、查了估算无理数的大小3(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案试题解析:(1)正方形的面积是 25 平方分米,正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米

17、,则 3x2x=18,x2=3,x1= ,x2=(舍去),3x=35,2x=25 ,即这块正方形工料不合格4(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的解析:(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的面积是33-4=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5x=(-舍去)故答案为:;(3)阴影正方形的边

18、长介于2与3两个整数之间【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法通过观察可知阴影部分的面积是5个小正方形的面积和会利用估算的方法比较无理数的大小58;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边长=【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方

19、等于a,即x2=a,那么这个正数x叫做a的算术平方根记为二、解答题6(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解解析:(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ【详解】解:(1)OPA=QPB,OPQ=82,OPA=(180-OPQ)=(180-82)=4

20、9,(2)作PCm,mn,mPCn,AOP=OPC=43,BQP=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQC,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的7(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的

21、性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可解析:(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作MQAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,QMEME

22、D,GMEGMQ+QMEBGM+MED,HPAB,BGHGHP2BGM,HPCD,PHEHED2MED,GHEGHP+PHE2BGM+2MED2(BGM+MED),GHE2GME;(3)过点M作MQAB,过点H作HPAB,由KFE:MGH13:5,设KFE13x,MGH5x,由(2)可知:BGH2MGH10x,AFE+BFE180,AFE18010x,FK平分AFE,AFKKFE AFE,即,解得:x5,BGH10x50,HPAB,HPCD,BGHGHP50,PHEHED,GHE90,PHEGHEGHP905040,HED40【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理

23、以及灵活构造平行线是解题的关键8(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平

24、分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键9(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2);(3)75

25、【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等),lMN,PQMN,lPQ,3=1(两直线平行,内错角相等),3+4=1+2,C=1+2;(2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平

26、分CAD,PBC=25,PBD=2PBC=50,CAM=MAD,PQMN,BJA=PBD=50,ADB=AJB-JAD=50-JAD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系10(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=G解析:(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质

27、以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=25,再根据PQCE,即可得出CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=4x-3x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)CEB=100,ABCD,ECQ=80,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCE=ECQ=40;(2)ABCDQCG=EGC,QCG+ECG=ECQ=80,EGC+ECG=80,又EGC-ECG=30,EGC=55,ECG=25,ECG=G

28、CF=25,PCF=PCQ=(80-50)=15,PQCE,CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=FCD=4x-3x=x,当点G、F在点E的右侧时,则ECG=x,PCF=PCD=x,ECD=80,x+x+x+x=80,解得x=16,CPQ=ECP=x+x+x=56;当点G、F在点E的左侧时,则ECG=GCF=x,CGF=180-4x,GCQ=80+x,180-4x=80+x,解得x=20,FCQ=ECF+ECQ=40+80=120,PCQFCQ60,CPQ=ECP=80-60=20【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行

29、,内错角相等三、解答题11(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据SODP=SODQ,列出关于t的方程,求得t的值即可; (3)过H点作AC的平行线,交x轴于P,先判定OGAC,再根据角的和差关系以及平行线的性质,得出PHO=GOF=1+

30、2,OHC=OHP+PHC=GOF+4=1+2+4,最后代入进行计算即可【详解】解:(1)+|b-2|=0, a-2b=0,b-2=0, 解得a=4,b=2, A(0,4),C(2,0) (2)存在, 理由:如图1中,D(1,2), 由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,0t2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t, SDOP=OPyD=(2-t)2=2-t,SDOQ=OQxD=2t1=t, SODP=SODQ, 2-t=t, t=1 (3)结论:的值不变,其值为2理由如下:如图2中,2+3=90, 又1=2,3=F

31、CO, GOC+ACO=180, OGAC, 1=CAO, OEC=CAO+4=1+4, 如图,过H点作AC的平行线,交x轴于P,则4=PHC,PHOG, PHO=GOF=1+2, OHC=OHP+PHC=GOF+4=1+2+4, =2【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题12(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,解析:(1)72;(2)30秒或110秒;(3)

32、不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0t90时,根据2t=1(30+t),可得 t=30;当90t150时,根据1(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据BAC=2t-108,BCD=126-BCA=t-54,即可得出BAC:BCD=2:1,据此可得BAC和BCD关系不会变化【详解】解:(1)BAM+BAN=180,BAM:BAN=3:2,BAN=180=72,故答案为:72;(2)设A灯转动t秒,两灯的光

33、束互相平行,当0t90时,如图1,PQMN,PBD=BDA,ACBD,CAM=BDA,CAM=PBD2t=1(30+t),解得 t=30;当90t150时,如图2,PQMN,PBD+BDA=180,ACBD,CAN=BDAPBD+CAN=1801(30+t)+(2t-180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)BAC和BCD关系不会变化理由:设灯A射线转动时间为t秒,CAN=180-2t,BAC=72-(180-2t)=2t-108,又ABC=108-t,BCA=180-ABC-BAC=180-t,而ACD=126,BCD=126-BCA=

34、126-(180-t)=t-54,BAC:BCD=2:1,即BAC=2BCD,BAC和BCD关系不会变化【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补13(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平

35、分线,可得DON,OCF的度数,也易得COE的度数,由三角形外角的性质即可求得OEF的度数;(3)不变,分三种情况讨论即可【详解】(1),且,m=20,n=70MOC=90AOM=70MOC=OCQ=70MNPQ(2)AON=180AOM=160又平分,平分, OEF=OCF+COE=35+10=45故答案为:45(3)不变,理由如下:如图,当020时,CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQMOC=OCQ=2xAON=36090(1802x)=90+2x,OD平分AONDON=45+xMOE=DON=45+xCOE=MOEMOC=45+x2x=45xOEF=CO

36、E+OCF=45x+x=45当=20时,OD与OB共线,则OCQ=90,由CF平分OCQ知,OEF=45当2090时,如图CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQNOC=180OCQ=1802xAON=90+(1802x)=2702x,OD平分AONAOE=135xCOE=90AOE=90(135x)=x45OEF=OCFCOE=x(x45)=45综上所述,EOF的度数不变【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便14(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长

37、DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得A解析:(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得ACB+CEF=180,由对顶角相等可得结论;(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据DEB比DHB大60,列出等式即可求DEB的度数;(3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求PBM的度数【详解】解:

38、(1)如图1,延长交于点,故答案为:;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质15(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可(2)分三种情形,利用平行线的性质构建方程即可解决问题(3)由参数表示,即可判断【详解】解析:(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可(2)分三种情形,利用平行线的性质构建方程即可解决问题(3)由参数表

39、示,即可判断【详解】解:(1),,;(2)设灯转动秒,两灯的光束互相平行,当时,解得;当时,解得;当时,解得,(不合题意)综上所述,当t=15秒或63秒时,两灯的光束互相平行;(3)设灯转动时间为秒,又,而,即【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型四、解答题16(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BA解析:(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,

40、C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BAQ与ABQ的和,最后在ABQ中,根据三角形的内角各定理可求AQB的大小第(2)题求P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解【详解】解:(1)AQB的大小不发生变化,如图1所示,其原因如下:mn,AOB90,在ABO中,AOB+ABO+BAO180,ABO+BAO90,又AQ、BQ分别是BAO和ABO的角平分线,BAQBAC,ABQABO,BAQ+ABQ (ABO+BAO)又在ABQ中,BAQ+ABQ+AQB180,AQB18045135(2)如图2所示:P的大小不发生变化,其原因如下:ABF+ABO180,EAB+BAO180BAQ+AB

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服