收藏 分销(赏)

人教版八年级下册数学期末试卷复习练习(Word版含答案).doc

上传人:w****g 文档编号:1913385 上传时间:2024-05-11 格式:DOC 页数:28 大小:703.54KB
下载 相关 举报
人教版八年级下册数学期末试卷复习练习(Word版含答案).doc_第1页
第1页 / 共28页
人教版八年级下册数学期末试卷复习练习(Word版含答案).doc_第2页
第2页 / 共28页
人教版八年级下册数学期末试卷复习练习(Word版含答案).doc_第3页
第3页 / 共28页
人教版八年级下册数学期末试卷复习练习(Word版含答案).doc_第4页
第4页 / 共28页
人教版八年级下册数学期末试卷复习练习(Word版含答案).doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、人教版八年级下册数学期末试卷复习练习(Word版含答案)一、选择题1要使有意义,则x的取值范围为()Ax100Bx2Cx2Dx22下列由线段a,b,c组成的三角形不是直角三角形的是()Aa:b:c1:2:3Ba,b1,cCa4,b5,cDa3,b4,c53如图,平行四边形ABCD中,EFBC,GHAB,EF,GH相交于点O,则图中有平行四边形( )A4个B5个C8个D9个4已知一组数据为1,5,3,3,7,11则这组数据的众数和中位数分别是( )A3,3B5,3C3,4D3,55如图,在中,是上一点,已知,则的长为()ABCD6如图,在菱形ABCD中,A110,则CBD的度数是()A90B70

2、C55D357如图,ABC中,ABC=90,AB=BC,三角形的顶点在相互平行的三条直线l1、l2、l3上,且l1、l2之间的距离为1,l2、l3之间的距离为3,则AC的长是( )A4B5C5D108两人在直线跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示给出以下结论:;其中正确的是( )ABCD二、填空题9若有意义,则的取值范围是_10如图,菱形的对角线与相交于点已知,那么这个菱形的面积为_11如图一根竹子长为8米,折断后竹子顶端落在离竹子底端4米处,折断处离地面高度是_米

3、12如图:已知在矩形中,为对角线的交点,于点,则的长为_13已知一次函数ykxb,当自变量x的取值范围是1x3时,对应的因变量y的取值范围是5y10,那么kb的值为_14如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD请你添加一个适当的条件:_,使四边形ABCD成为菱形15某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:快递车从甲地到乙地的

4、速度为100千米/时;甲、乙两地之间的距离为120千米; 图中点B的坐标为(,75);快递车从乙地返回时的速度为90千米/时以上4个结论中正确的是 _16如图,在三角形纸片ABC中,ACB90,BC6,AB10,如果在AC边上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,那么CE的长为_三、解答题17计算(1)(2)18笔直的河流一侧有一营地C,河边有两个漂流点A,B、其中ABAC,由于周边施工,由C到A的路现在已经不通,为方便游客,在河边新建一个漂流点H(A,H,B在同一直线上),并新修一条路CH,测得BC10千米,CH8千米,BH6千米(1)判断BCH的形状

5、,并说明理由;(2)求原路线AC的长19在所给的99方格中,每个小正方形的边长都是1,按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上(1)在图甲中画一个平行四边形,使它的周长是整数(2)在图乙中画一个平行四边形,使它的周长是无理数20已知:如图,在RtABC中,D是AB边上任意一点,E是BC边中点,过点C作CFAB,交DE的延长线于点F,连接BF、CD(1)求证:四边形CDBF是平行四边形(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由21先阅读下列解答过程,然后再解答:小芳同学在研究化简中发现:首先把化为由于,即:, ,所以,问题:(1)填空:_,_(2)进

6、一步研究发现:形如的化简,只要我们找到两个正数a,b(),使,即,那么便有: _(3)化简:(请写出化简过程)22亮亮奶茶店生产、两种奶茶,由于地处旅游景点区域,每天都供不应求,经过计算,亮亮发现种奶茶每杯生产时间为4分钟,种奶茶每杯生产时间为1分钟,由于原料和运营时间限制,每天生产的总时间为300分钟(1)设每天生产种奶茶杯,生产种奶茶杯,求与之间的函数关系式;(2)由于种奶茶比较受顾客青睐,亮亮决定每天生产种奶茶不少于73杯,那么不同的生产方案有多少种?(3)在(2)的情况下,若种奶茶每杯利润为3元,种奶茶每杯利润为1元,求亮亮每天获得的最大利润23图1,在正方形中,为线段上一点,连接,过

7、点作,交于点将沿所在直线对折得到,延长交于点(1)求证:(2)若,求的长(3)如图2,延长交的延长线于点,若,记的面积为,求与之间的函数关系式24【模型建立】(1)如图1,等腰直角三角形ABC中,ACB90,CACB,直线ED经过点C,过A作ADED于点D,过B作BEED于点E求证:CDABEC【模型运用】(2)如图2,直线l1:yx+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90至直线l2,求直线l2的函数表达式【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30得到BP,过点B的直线BC交

8、x轴于点C,OCB30,点B到x轴的距离为2,求点P的坐标25如图,在平面直角坐标系中,点A(1,4),点B(3,2),连接OA,OB(1)求直线OB与AB的解析式;(2)求AOB的面积(3)下面两道小题,任选一道作答作答时,请注明题号,若多做,则按首做题计入总分在y轴上是否存在一点P,使PAB周长最小若存在,请直接写出点P坐标;若不存在,请说明理由在平面内是否存在一点C,使以A,O,C,B为顶点的四边形是平行四边形若存在,请直接写出点C坐标;若不存在,请说明理由26如图1,已知RtABC中,BAC90,点D是AB上一点,且AC8,DCA45,AEBC于点E,交CD于点F(1)如图1,若AB2

9、AC,求AE的长;(2)如图2,若B30,求CEF的面积;(3)如图3,点P是BA延长线上一点,且APBD,连接PF,求证:PF+AFBC【参考答案】一、选择题1C解析:C【分析】根据二次根式有意义的条件可知,解不等式即可【详解】有意义,解得:故选C【点睛】本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键2A解析:A【分析】运用勾股定理的逆定理进行计算求解即可判断.【详解】解:A、,设,(其中k0),故选项A中的三条线段不能构成直角三角形;B、12+()2()2,故选项B中的三条线段能构成直角三角形;C、42+52()2,故选项C中的三条线段能构成直角三角形;D、32+42

10、52,故选项D中的三条线段能构成直角三角形;故选A【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握勾股定理的逆定理.3D解析:D【解析】【分析】首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数【详解】四边形ABCD是平行四边形,ADBC,CDAB,又EFBC,GHAB,ABGHCD,ADEFBC,平行四边形有: ABCD,ABHG,CDGH,BCFE,ADFE,AGOE,BEOH,OFCH,OGDF,共9个即共有9个平行四边形故选D【点睛】本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.4

11、C解析:C【解析】【分析】根据众数和中位数的定义求解即可,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数众数:在一组数据中出现次数最多的数【详解】将1,5,3,3,7,11从小到大排列为:,3,3,5,7,11其中出现的次数最多,则众数为,中位数为:故选C【点睛】本题考查了求众数和中位数,理解众数和中位数的定义是解题的关键5C解析:C【分析】先根据勾股定理的逆定理得到ABD是直角三角形,然后根据勾股定理求出CD即可.【详解】解:根据题意,在ABD中,ABD是

12、直角三角形,ADBC,在ACD中,AD=12,AC=15,;故选:C.【点睛】本题考查了勾股定理的逆定理和勾股定理,解题的关键是熟练掌握勾股定理的逆定理和利用勾股定理进行解直角三角形.6D解析:D【解析】【分析】根据菱形的性质得到ABDCBD,ADBC,根据平行线的性质求出ABC的度数,可进而求出CBD的度数【详解】解:四边形ABCD是菱形,ABDCBD,ADBC,A+ABC180,CBDABC,A110,ABC180A18011070,CBD7035,故选:D【点睛】本题考查了菱形的性质、平行线的性质,解题的关键是熟练掌握菱形的对边互相平行,对角线平分一组对角7C解析:C【解析】【分析】过点

13、A作AE,垂足为E,过点C作CF,垂足为F,交于点G,证明ABEBCF,得到BF=AE=3,CF=4,运用勾股定理计算即可【详解】过点A作AE,垂足为E,过点C作CF,垂足为F,交于点G,CG,AE=3,CG=1,FG=3,ABC=90,AB=BC,ABE+CBF=90,ABE+BAE=90,CBF=BAE,ABEBCF,BF=AE=3,CF=4,BC=5,AC=5,故选C【点睛】本题考查了平行线间的距离,三角形的全等和性质,勾股定理,熟练掌握三角全等判定,灵活运用勾股定理是解题的关键8B解析:B【分析】易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速

14、度较快乙80s跑完总路程400可得乙的速度,进而求得80s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,减2即为c的值【详解】由函数图象可知,甲的速度为(米/秒),乙的速度为(米/秒),(秒),故正确;(米)故正确;(秒)故正确;正确的是故选B【点睛】本题考查了一次函数的应用,得到甲乙两人的速度是解决本题的突破点,得到相应行程的关系式是解决本题的关键二、填空题9且【解析】【分析】根据二次根式有意义的条件,被开方数大于等于0,以及分母不等于0,即可求的取值范围【详解】解:根据题意得:,解得且故答案为:且【点睛】主要考查了二次根式以及分式有意义的条件

15、解题的关键是二次根式中的被开方数必须是非负数,否则二次根式无意义;分式有意义的条件是分母不等于零10A解析:96【解析】【分析】根据菱形的性质可得ACBD,然后利用勾股定理求出OB8cm,得出BD16cm,最后根据菱形的面积公式求解【详解】四边形ABCD为菱形,ACBD,OAOCAC6cm,OBOD,OB8(cm),BD2OB16cm,S菱形ABCDACBD121696(cm2)故答案为:96【点睛】本题考查了菱形的性质以及勾股定理,解答本题的关键是掌握菱形的两条对角线互相垂直的性质113【解析】【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x米,则斜边为(8-x)米利用勾股定理解

16、题即可【详解】解:设竹子折断处离地面x米,则斜边为(8-x)米,根据勾股定理得:x2+42=(8-x)2解得:x=3折断处离地面高度是3米,故答案为:3【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题12【分析】先证明是等边三角形,再利用等边三角形的性质求解再求解 再利用勾股定理即可得到答案.【详解】解: 矩形,为对角线的交点, 是等边三角形, , 故答案为:【点睛】本题考查的是矩形的性质,等边三角形的判定与性质,含的直角三角形的性质,勾股定理的应用,掌握以上知识是解题的关键.135或10【分析】本题分情况讨论k0时,x=1时对应y=5;k0时,x

17、=1时对应y=10【详解】解:k0时,由题意得:x=1时,y=5,k-b=5;k0时,由题意得:x=1时,y=10,k-b=10;综上,k-b的值为5或10故答案为:5或10【点睛】本题考查了待定系数法求函数解析式,注意本题需分两种情况,不要漏解14A解析:AB=AD.【分析】由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定【详解】添加AB=AD,OA=OC,OB=OD,四边形ABCD为平行四边形,AB=AD,四边形ABCD是菱形,故答案为AB=AD【点睛】此题主要考查了平行四边形

18、的判定,关键是掌握一组对边平行且相等的四边形是平行四边形15【分析】根据两车速度之差3小时=120,解方程可判断,根据两车间的距离而且是同向可判断,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断,解析:【分析】根据两车速度之差3小时=120,解方程可判断,根据两车间的距离而且是同向可判断,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断,根据返回快递车速与货车速度之和乘以返货到相遇时间=75,解方程可判断【详解】解:设快递车从甲地到乙地的速度为x千米/时,则3(x60)=120,x=100故正确;因为120千

19、米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,故错误;因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=,点B纵坐标为12060=75,故正确;设快递车从乙地返回时的速度为y千米/时,则(y+60)()=75,y=90,故正确故答案为【点睛】本题考查一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,掌握一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,一次函数的应用是解题关键163【分析】利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB,DE=AE,根据线段的和差关系可得CD的长,设CE=x,则DE=8-x,利用

20、勾股定理列方程求出x的值即可得答案【详解】解析:3【分析】利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB,DE=AE,根据线段的和差关系可得CD的长,设CE=x,则DE=8-x,利用勾股定理列方程求出x的值即可得答案【详解】ACB90,BC6,AB10,AC=8,BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,BD=AB=10,DE=AE,DCE=90,CD=BD-BC=10-6=4,设CE=x,则DE=AE=AC-CE=8-x,在RtDCE中,DE2=CE2+CD2,即(8-x)2=x2+42,解得:x=3,CE=3,故答案为:3【点睛】本题考查了翻折变换的性质及

21、勾股定理的应用,根据翻折前后的两个图形能够重合得到相等的线段并转化到一个直角三角形中,利用勾股定理列出方程是解此类题目的关键三、解答题17(1)2;(2)【分析】(1)原式利用绝对值、有理数的乘方、零指数幂、负整数指数幂以及立方根定义计算即可求出值;(2)根据二次根式的性质化简,然后再进行计算即可;【详解】解:(1)=解析:(1)2;(2)【分析】(1)原式利用绝对值、有理数的乘方、零指数幂、负整数指数幂以及立方根定义计算即可求出值;(2)根据二次根式的性质化简,然后再进行计算即可;【详解】解:(1)=2(2)=【点睛】本题主要考查了实数的运算,关键是熟练掌握立方根和算术平方根18(1)HBC

22、是直角三角形,理由见解析;(2)原来的路线AC的长为千米【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】解:(1)BCH是直角三角形,理解析:(1)HBC是直角三角形,理由见解析;(2)原来的路线AC的长为千米【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】解:(1)BCH是直角三角形,理由是:在CHB中,CH2+BH2=82+62=100,BC2=100,CH2+BH2=BC2,HBC是直角三角形且CHB=90;(2)设AC=AB=x千米,则AH=AB-BH=(x-6)千米,在RtACH中,由已知得AC=x,AH=x-6,CH=8,

23、由勾股定理得:AC2=AH2+CH2,x2=(x-6)2+82,解这个方程,得x=,答:原来的路线AC的长为千米【点睛】本题考查了勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理19(1)见解析;(2)见解析【解析】【分析】(1)作边长为3,5的平行四边形即可;(2)作边长为,的平行四边形即可;【详解】解(1)根据网格作出边长为3,4,5的直角三角形,再以4为公共边解析:(1)见解析;(2)见解析【解析】【分析】(1)作边长为3,5的平行四边形即可;(2)作边长为,的平行四边形即可;【详解】解(1)根据网格作出边长为3,4,5的直角三角形,再以4为公共边作边长为3,4,5的直角三角形

24、,如下图:(2)借助网格,作边长为、的三角形,再以为公共边作边长为、的三角形,如下图:【点睛】此题主要考查了应用设计与作图以及勾股定理和平行四边形的判定,正确借助网格是解题关键20(1)见解析;(2)四边形CDBF是菱形,理由见解析【分析】(1)证CEFBED(ASA),得CF=BD,再由CFDB,即可得出结论;(2)由直角三角形斜边上的直线性质得CD=DB,即解析:(1)见解析;(2)四边形CDBF是菱形,理由见解析【分析】(1)证CEFBED(ASA),得CF=BD,再由CFDB,即可得出结论;(2)由直角三角形斜边上的直线性质得CD=DB,即可证平行四边形CDBF是菱形【详解】(1)证明

25、:CFAB,ECF=EBD,E是BC中点,CE=BE,在CEF和BED中,CEFBED(ASA),CF=BD,又CFAB,四边形CDBF是平行四边形(2)解:四边形CDBF是菱形,理由如下:D为AB的中点,ACB=90,CD=AB=BD,由(1)得:四边形CDBF是平行四边形,平行四边形CDBF是菱形【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明CEFBED是解题的关键,属于中考常考题型21(1),;(2);(3)【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;

26、(2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果;(3)将写成,4解析:(1),;(2);(3)【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果;(3)将写成,4写成,就可以凑成完全平方的形式进行计算【详解】解:(1);(2);(3)=【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则22(1);(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可;(3)

27、列出利润与的函数关解析:(1);(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可;(3)列出利润与的函数关系式,然后依据一次函数的性质求解即可【详解】(1)每天生产的时间为300分钟,由题意得:,(2)由题意得:解得:为整数,74,75不同的生产方案有3种(3)设每天的利润为元,则即,随的增大而减小当时,取最大值,此时(元)答:每天获得的最大利润为227元【点评】本题主要考查的是一次函数的应用,列出关于的不等式组是解题的关键23(1)证明见解析;(2);(3)【分析】(1)先证,再据AS

28、A证明ABPBCQ,可证得BP=CQ;(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RTNDQ解析:(1)证明见解析;(2);(3)【分析】(1)先证,再据ASA证明ABPBCQ,可证得BP=CQ;(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RTNDQ中用勾股定理列方程求解;(3)作QGAB于G,先证MB=MQ并设其为y,再在RTMGQ中用勾股定理列出关于x、y的方程,并用x表示y;用y表示出MBQ的面积,用x表示出的面积最后据用x、y表示出S,并把其中的y用x代换即可【详解】(1)在正方形ABCD中,(2)在正方形ABCD中连接,如下

29、图:由折叠知BC=,又AB=BC,BAN=90, ,设,(3)如下图,作,垂足为,由(1)知MBQ=CQB=MQBBM=MQ设,则,故【点睛】此题综合考查了正方形性质、三角形全等,勾股定理等知识点,其关键是要熟练掌握相关知识,能灵活应用24(1)见解析;(2);(3)点P坐标为(4,0)或(4,0)【解析】【分析】(1)由“AAS”可证CDABEC;(2)如图2,在l2上取D点,使ADAB,过D点作DEOA,垂足为解析:(1)见解析;(2);(3)点P坐标为(4,0)或(4,0)【解析】【分析】(1)由“AAS”可证CDABEC;(2)如图2,在l2上取D点,使ADAB,过D点作DEOA,垂足

30、为E,由(1)可知BOAAED,可得DEOA3,AEOB4,可求点D坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明OAPCPB,可得OPBC4,即可求点P坐标【详解】(1)证明:ADDE,BEDE,DE90,BCE+CBE=90,ACB90,ACD+BCE=90,ACD=CBE,又CABC,DE90CDABEC(AAS)(2)如图2,在l2上取D点,使ADAB,过D点作DEOA,垂足为E直线yx+4与坐标轴交于点A、B,A(3,0),B(0,4),OA3,OB4,由(1)得BOAAED,DEOA3,AEOB4,OE7,D(7,3)设l2的解析式为ykx+b,得解得直线l2的函数表

31、达式为:(3)若点P在x轴正半轴,如图3,过点B作BEOC,BE2,BCO30,BEOCBC4,将线段AP绕点P顺时针旋转30得到BP,APBP,APB30,APCAOC+OAPAPB+BPC,OAPBPC,且OACPCB30,APBP,OAPCPB(AAS)OPBC4,点P(4,0)若点P在x轴负半轴,如图4,过点B作BEOC,BE2,BCO30,BEOCBC4,将线段AP绕点P顺时针旋转30得到BP,APBP,APB30,APE+BPE30,BCE30BPE+PBC,APEPBC,AOEBCO30,AOPBCP150,且APEPBC,PAPBOAPCPB(AAS)OPBC4,点P(4,0)

32、综上所述:点P坐标为(4,0)或(4,0)【点睛】本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键25(1)直线OB的解析式为,直线AB的解析式为y= -x+5(2)5;(3)存在,(0,);存在,(2,-2)或(4,6)或(-2,2)【分析】(1)根据题意分别设出两直线的解析式,代入直线上解析:(1)直线OB的解析式为,直线AB的解析式为y= -x+5(2)5;(3)存在,(0,);存在,(2,-2)或(4,6)或(-2,2)【分析】(1)根据题意分别设出两直线

33、的解析式,代入直线上两点坐标即可求出直线OB与AB的解析式;(2)延长线段AB交x轴于点D,求出D的坐标,分别求出、由即可求得;(3)根据两点之间线段最短,A、B在y轴同侧,作出点A关于y的对称点,连接B与y轴的交点即为所求点P;使以A,O,C,B为顶点的四边形是平行四边形,则分三种情况分析,分别以OA、AB、OB为对角线作出平行四边形,利用中点坐标公式代入求解即可【详解】解:(1)设直线OB的解析式为y=mx, 点B(3,2), ,直线OB的解析式为,设直线AB的解析式为y=kx+b,根据题意可得:解之得 直线AB的解析式为y= -x+5 故答案为:直线OB的解析式为,直线AB的解析式为y=

34、 -x+5;(2)如图,延长线段AB交x轴于点D, 当y=0时,-x+5=0,x=5,点D横坐标为5,OD=5, ,故答案为:5 (3)存在,(0,);过点A作y轴的对称点,连接B,交y轴与点P,则点P即为使PAB周长最小的点,由作图可知,点坐标为,又点B(3,2)则直线B的解析式为:,点P坐标为,故答案为:;存在 或或有三种情况,如图所示:设点C坐标为,当平行四边形以AO为对角线时,由中点坐标公式可知,AO的中点坐标和BC中点坐标相同,解得点坐标为,当平行四边形以AB为对角线时,AB的中点坐标和OC的中点坐标相同,则点的坐标为,当平行四边形以BO为对角线时,BO的中点坐标和AC的中点坐标相同

35、,则解得点坐标为,故答案为:存在,或或【点睛】本题考查了直线解析式的求法,列二元一次方程组求解问题,割补法求三角形的面积,两点之间线段最短,“将军饮马”模型的应用,添加点构造平行四边形,利用中点坐标公式求点坐标题型26(1);(2);(3)见解析【分析】(1)利用勾股定理求出BC,再利用面积法求出AE即可(2)如图2中,过点作于点,先求得,根据含30度角的直角三角形的性质求得,设,勾股定理求得进而求得,利解析:(1);(2);(3)见解析【分析】(1)利用勾股定理求出BC,再利用面积法求出AE即可(2)如图2中,过点作于点,先求得,根据含30度角的直角三角形的性质求得,设,勾股定理求得进而求得

36、,利用三角形面积公式即可求得CEF的面积;(3)如图3中,过A点作AMCD于点M,与BC交于点N,连接DN,证明AMFDMN(ASA),推出AFDNCN,再证明APFDBN(SAS),可得结论【详解】(1)AB2AC,AC8,AB16,BAC90,BC,AEBC,SABC,AE(2)如图,过点作于点,则,B30,,,, ,AEBC,设,则,解得(3)证明:如图3中,过A点作AMCD于点M,与BC交于点N,连接DNBAC90,ACAD,AMCD,AMDMCM,DAMCAMADMACD45,DNCN,NDMNCM,AEBC,ECFEFCMAFAFM90,AFMEFC,MAFECF,MAFMDN,AMFDMN,AMFDMN(ASA),AFDNCN,BAC90,ACAD,DAMCAMADMACD45,NAPCDB135,MAFMDN,PAFBDN,APDB,APFDBN(SAS),PFBN,AFCN,PFAFCNBN,即PFAFBC【点睛】考查了全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,学会添加常用辅助线,构造全等三角形是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服