资源描述
初二上册压轴题强化数学综合检测试题带答案
1、我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”.
(1)如下:①平行四边形,②矩形,③菱形,④正方形,一定是“菠菜四边形”的是________(填序号);
(2)如图1,四边形ABCD为“菠菜四边形”,且∠BAD=∠BCD=90°,AD=AB,AE⊥CD于点E,若AE=4,求四边形ABCD的面积;
(3)①如图2,四边形ABCD为“菠菜四边形”,且AB=AD,记四边形ABCD,△BOC,△AOD的面积依次为S,,,若.求证:ADBC;
②在①的条件下,延长BA、CD交于点E,记BC=m,DC=n,求证:.
2、如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0.
(1)求a,b的值;
(2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°;
(3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系.
3、△ABC、△DPC都是等边三角形.
(1)如图1,求证:AP=BD;
(2)如图2,点P在△ABC内,M为AC的中点,连PM、PA、PB,若PA⊥PM,且PB=2PM.
①求证:BP⊥BD;
②判断PC与PA的数量关系并证明.
4、如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE.
(1)如图1,若点P与点C重合,求∠ABE的度数;
(2)如图2,若P在C点上方,求证:PD+AC=CE;
(3)若AC=6,CE=2,则PD的值为 (直接写出结果).
5、如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒.
(1)求a,b的值;
(2)当t为何值时,△BAD≌△OAE;
(3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP.
6、如图1,在平面直角坐标系中,点,,且,满足,连接,,交轴于点.
(1)求点的坐标;
(2)求证:;
(3)如图2,点在线段上,作轴于点,交于点,若,求证:.
7、如图,是等边三角形,点在上,点在的延长线上,且.
(1)如图甲,若点是的中点,求证:
(2)如图乙,若点不的中点,是否成立?证明你的结论.
(3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由.
8、已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC.
(1)如图1,若∠BAD=90°,AD=2,求CD的长度;
(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°−∠ADC;
(3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.
【参考答案】
1、(1)③ ④
(2)16
(3)①见解析;②见解析
【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;
(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得
【解析】(1)③ ④
(2)16
(3)①见解析;②见解析
【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;
(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,,求出,求出,代入求解即可;
(3)记面积为,则,,根据已知条件可得,进而可得,得出
由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论.
(1)
根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形,
故答案为:③④
(2)
如图,过A作,交CB的延长线于F,
∴ 四边形AFCE是矩形
则
四边形AFCE是正方形,
即四边形ABCD的面积为16
(3)
①记,
∴
∵
∴
∴
∵
∴
∴
∴
∴
如图:作,
∴
∴ AMAD
∴四边形AMND为平行四边形
∴ADMN
∴ADBC
②∵ADBC
∴
又∵AD=AB
∴
∴
∴BD平分
如图:
∵
∴
∴
又∵
∴
∴
【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键.
2、(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;
【解析】(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;
(2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可;
(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可.
【详解】(1)
由绝对值的非负性和平方数的非负性得:
解得:;
(2)如图1,作于E
是等腰直角三角形,
;
(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C
∴
∵在四边形MCOB中,
是等腰直角三角形
∴
是等腰直角三角形
.
【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.
3、(1)证明过程见解析;
(2)①证明过程见解析;②PC=2PA,理由见解析.
【分析】(1)证明△BCD≌△ACP(SAS),可得结论;
(2)①如图2中,延长PM到K,使得MK=PM,连接CK.证
【解析】(1)证明过程见解析;
(2)①证明过程见解析;②PC=2PA,理由见解析.
【分析】(1)证明△BCD≌△ACP(SAS),可得结论;
(2)①如图2中,延长PM到K,使得MK=PM,连接CK.证明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再证明△PDB≌△PCK(SSS),可得结论;
②结论:PC=2PA.想办法证明∠DPB=30°,可得结论.
(1)证明:如图1中,∵△ABC,△CDP都是等边三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP;
(2)证明:如图2中,延长PM到K,使得MK=PM,连接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可证△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:结论:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,设∠DPB=∠CPK=x,则∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA.
【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30°角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题.
4、(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1
【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;
【解析】(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1
【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°;
(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论;
(3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可.
【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线,
∴PA=PB,
∴∠PAB=∠PBA=30°,
∴∠BPE=∠PAB+∠PBA=60°,
∵PB=PE,
∴△BPE为等边三角形,
∴∠CBE=60°,
∴∠ABE=90°;
(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,
∵CD垂直平分AB,
∴CA=CB,
∵∠BAC=30°,
∴∠ACD=∠BCD=60°,
∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°,
∴∠GPC=∠HPC=30°,
∴PG=PH,CG=CH=CP,CD=AC,
在Rt△PGB和Rt△PHE中,
,
∴Rt△PGB≌Rt△PHE(HL).
∴BG=EH,即CB+CG=CE-CH,
∴CB+CP=CE-CP,即CB+CP=CE,
又∵CB=AC,
∴CP=PD-CD=PD-AC,
∴PD+AC=CE;
(3)①当P在C点上方时,由(2)得:PD=CE-AC,
当AC=6,CE=2时,PD=2-3=-1,不符合题意;
②当P在线段CD上时,
如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G,
此时Rt△PGB≌Rt△PHE(HL),
∴BG=EH,即CB-CG=CE+CH,
∴CB-CP=CE+CP,即CP=CB-CE,
又∵CB=AC,
∴PD=CD-CP=AC-CB+CE,
∴PD=CE-AC.
当AC=6,CE=2时,PD=2-3=-1,不符合题意;
③当P在D点下方时,如图4,
同理,PD=AC-CE,
当AC=6,CE=2时,PD=3-2=1.
故答案为:1.
【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论.
5、(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.
【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;
(2
【解析】(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.
【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;
(2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论.
(3)先判断出△OAP≌△BAQ(SAS),得出OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,再求出∠OAP=135°,进而判断出△OAQ≌△BAQ(SAS),得出∠OQA=∠BQA=15°,OQ=BQ,再判断出△OPQ是等边三角形,得出∠OQP=60°,进而求出∠BQP=30°,再求出∠PBQ=75°,即可得出结论.
【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0,
∴(a﹣2)2+(b﹣1)2=0,
∴a﹣2=0,b﹣1=0,
∴a=2,b=1;
(2)由(1)知,a=2,b=1,
由运动知,OD=2t,OE=t,
∵OB=8,
∴DB=|8﹣2t|
∵△BAD≌△OAE,
∵DB=OE,
∴|8﹣2t|=t,
解得,t=(如图1)或t=8(如图2);
(3)如图3,
过点A作AQ⊥AP,使AQ=AP,连接OQ,BQ,PQ,
则∠APQ=45°,∠PAQ=90°,
∵∠OAB=90°,
∴∠PAQ=∠OAB,
∴∠OAB+∠BAP=∠PAQ+∠BAP,
即:∠OAP=∠BAQ,
∵OA=AB,AD=AD,
∴△OAP≌△BAQ(SAS),
∴OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,
在△AOP中,∠AOP=30°,∠APO=15°,
∴∠OAP=180°﹣∠AOP﹣∠APO=135°,
∴∠OAQ=360°﹣∠OAP﹣∠PAQ=135°﹣90°=135°=∠OAP,
∵OA=AB,AD=AD,
∴△OAQ≌△BAQ(SAS),
∴∠OQA=∠BQA=15°,OQ=BQ,
∵OP=BQ,
∴OQ=OP,
∵∠APQ=45°,∠APO=15°,
∴∠OPQ=∠APO+∠APQ=60°,
∴△OPQ是等边三角形,
∴∠OQP=60°,
∴∠BQP=∠OQP﹣∠OQA﹣∠BQA=60°﹣15°﹣15°=30°,
∵BQ=PQ,
∴∠PBQ=(180°﹣∠BQP)=75°,
∴∠ABP=∠ABQ+∠PBQ=30°+75°=105°.
【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键.
6、(1);(2)证明见解析;(3)证明见解析.
【分析】(1)由非负性可求a,b的值,即可求解;
(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三
【解析】(1);(2)证明见解析;(3)证明见解析.
【分析】(1)由非负性可求a,b的值,即可求解;
(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三角形,可得∠BAC=45°,可得结论;
(3)由“AAS”可证△ATO≌△EAG,可得AT=AE,OT=AG,由“SAS”可证△TAD≌△EAD,可得TD=ED,∠TDA=∠EDA,由平行线的性质可得∠EFD=∠EDF,可得EF=ED,即可得结论.
【详解】解:(1)∵a2-2ab+2b2-16b+64=0,
∴(a-b)2+(b-8)2=0,
∴a=b=8,
∴b-6=2,
∴点C(2,-8);
(2)∵a=b=8,
∴点A(0,6),点B(8,0),点C(2,-8),
∴AO=6,OB=8,
如图1,过点B作PQ⊥x轴,过点A作AP⊥PQ,交PQ于点P,过点C作CQ⊥PQ,交PQ于点Q,
∴四边形AOBP是矩形,
∴AO=BP=6,AP=OB=8,
∵点B(8,0),点C(2-8),
∴CQ=6,BQ=8,
∴AP=BQ,CQ=BP,
又∠APB=∠BCQ
∴△ABP≌△BCQ(SAS),
∴AB=BC,∠BAP=∠CBQ,
∵∠BAP+∠ABP=90°,
∴∠ABP+∠CBQ=90°,
∴∠ABC=90°,
∴△ABC是等腰直角三角形,
∴∠BAC=45°,
∵∠OAD+∠ADO=∠OAD+∠BAC+∠ABO=90°,
∴∠OAC+∠ABO=45°;
(3)如图2,过点A作AT⊥AB,交x轴于T,连接ED,
∴∠TAE=90°=∠AGE,
∴∠ATO+∠TAO=90°=∠TAO+∠GAE=∠GAE+∠AEG,
∴∠ATO=∠GAE,∠TAO=∠AEG,
又∵EG=AO,
∴△ATO≌△EAG(AAS),
∴AT=AE,OT=AG,
∵∠BAC=45°,
∴∠TAD=∠EAD=45°,
又∵AD=AD,
∴△TAD≌△EAD(SAS),
∴TD=ED,∠TDA=∠EDA,
∵EG⊥AG,
∴EG∥OB,
∴∠EFD=∠TDA,
∴∠EFD=∠EDF,
∴EF=ED,
∴EF=ED=TD=OT+OD=AG+OD,
∴EF=AG+OD.
【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
7、(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.
【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题;
(2)过D作DF∥BC,交AB于F,证△
【解析】(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.
【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题;
(2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF是等边三角形,推出AD=DF,即可得出答案.
(3)如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE.
【详解】证明:是等边三角形,
为中点,
,,
;
(2)成立,
如图乙,过作,交于,
则是等边三角形,
,
,
,,
在和中
,
即
如图3,过点作,交的延长线于点,
是等边三角形,也是等边三角形,
,
,
在和中,
【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形.
8、(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.
【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2;
【解析】(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.
【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2;
(2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ的对应角相等求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”可以推知∠PBQ=90°-∠ADC;
(3)(2)中结论不成立,应该是:∠PBQ=90°+∠ADC.
如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+∠ADC.
【详解】(1)∵, ∴
在Rt△BAD和Rt△BCD中,
∴Rt△BAD≌Rt△BCD(HL)
∴AD=DC=2 ∴DC=2
(2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK
∵
∴
∵
∴
在△BPA和△BCK中
∴△BPA≌△BCK(SAS)
∴,BP=BK
∵PQ=AP+CQ
∴PQ=QK
在△PBQ和△BKQ中
∴△PBQ≌△BKQ(SSS)
∴
∴
∴
∵
∴
∴
∴
(3)(2)中结论不成立,应该是:
在CD延长线上找一点K,使得KC=AP,连接BK
∵
∴
∵
∴
在△BPA和△BCK中
∴△BPA≌△BCK(SAS)
∴,BP=BK
∴
∵PQ=AP+CQ
∴PQ=QK
在△PBQ和△BKQ中
∴△PBQ≌△BKQ(SSS)
∴
∴
∴
∴
【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
展开阅读全文