资源描述
人教版五年级下册数学期末解答解答应用题专项含答案
1.从学校步行到体育馆,小明花了小时,小青比小明少花小时,小王比小青多花了小时。小王花了多少时间到达体育馆?
2.一台拖拉机耕地,第一天耕这块地的,第二天耕这块地的,还剩下这块地的几分之几没有耕?
3.据悉:2019年湖北省中小学机器人大赛设一、二、三等奖,一、二等奖的获奖人数占获奖总人数的,二、三等奖的获奖人数也占获奖总人数的,一、二、三等奖的获奖人数各占获奖总人数的几分之几?
4.修路队修一条公路,第一周修了千米,第二周修了千米,第三周比前两周修的总和少千米,第三周修了多少千米?
5.柏树和松树一共有6500棵。松树的棵树是柏树的1.5倍。松树有多少棵?(列方程解答)
6.一支钢笔比一支圆珠笔贵6.5元,钢笔的单价是圆珠笔的3.5倍。请你提出一个数学问题,并用方程解答。
7.某学校的四年级学生比五年级少80人,五年级人数是四年级的1.4倍。四、五年级各有学生多少人?
8.某商场购进牡丹花和百合花共880枝,购进牡丹花的数量是百合花的1.2倍,牡丹花和百合花各购进多少枝?(列方程解决问题)
9.两幢教学楼之间有一个长方形空地,中间是一条宽1米的鹅卵石小路,其余部分都种植了花草。种植花草的面积有多大?
10.如图,一条圆形跑道,AB是直径。甲乙两人分别从A、B两点出发,按箭头方向前进,他们在离A点75米的C点相遇,接着又在离B点25米的D点相遇。圆形跑道的长是多少米?
11.有两根圆木,一根长12米,另一根长21米,要把它们截成同样长的小段,且没有剩余,每小段圆木最长多少米?一共可以截成几段?
12.明明准备用若干张长15厘米、宽12厘米的长方形纸片拼成一个正方形,拼成的正方形的边长最少是多少厘米?拼成这个正方形需要多少张这样的长方形纸片?
13.学校组织五、六年级同学听抗疫英雄巡回演讲会,一共有972人。报告厅每排可以坐18人,五年级坐了26排,六年级坐了多少排?(列方程解答)
14.学校买来的篮球比排球多48个,篮球的个数正好是排球的3倍。学校买来篮球和排球各多少个?(用方程解)
15.甲、乙两医疗器材工厂在期间共生产了180万只一次性医用口罩,已知甲工厂生产的口罩数量比乙工厂生产数量的3倍还多4万只,求甲、乙工厂各生产了多少万只医用口罩?(列方程解决问题)
16.黄花的朵数是红花3倍,黄花比红花多18朵。黄花和红花各有多少朵?(列方程解答)
17.甲、乙两地相距380千米,一辆客车从甲地开往乙地,每小时行驶110千米,一辆货车从乙地开往甲地,每小时行驶80千米,两车同时从两地相对开出,几小时可以相遇?
18.客车和货车同时从相距350千米的甲乙两地相对开去,经过3.5小时两车相遇,已知货车每小时行40千米,客车每小时行多少千米?
19.一列货车和一列客车同时从相距540千米的两地相对开出,6小时相遇,客车每小时行64千米,货车每小时行多少千米?
20.两列火车从相距500千米的两地同时相向开出,已知甲车每小时行110千米,乙车每小时行90千米,经过几小时两车相遇?
21.一个半径5米的圆形水池,周围一条2米宽的小路,求这条小路的占地面积。
22.一个直径是10米的圆形花坛,周围有一条2米宽的小路,这条小路的面积是多少平方米?
23.在一个直径是6米的圆形水池四周,修一条宽1米的石子路,这条石子路的面积是多少平方米?(请在图中标一标,画一画。)
24.一个羊圈依墙而建,呈半圆形,半径是5米。
(1)做这个羊圈至少需要多长的栅栏?
(2)如果要扩建这个羊圈,把它的直径增加2米,羊圈的面积增加多少平方米?
25.下面是甲、乙两城市上半年的降水情况统计表。
1月份
2月份
3月份
4月份
5月份
6月份
甲市降水量/毫米
52
10
5
15
70
110
乙市降水量/毫米
15
36
25
75
72
120
(1)完成如图所示的统计图。
甲、乙两城市上半年降水情况统计图
(2)甲市降水量最多的月份与最少的月份相差( )毫米。
(3)乙市从( )月份到( )月份降水量增加最多。
(4)( )月份甲、乙两市的降水量最接近,( )月份甲、乙两市的降水量相差最大。
26.五(1)班要从两个同学中选一人参加学校的投篮比赛。下表是两位同学的训练成绩:(每人每次投10个)
星期
投中数
选手
一
二
三
四
五
甲
2
6
1
7
4
乙
2
3
4
5
6
(1)根据表中数据完成折线统计图;
(2)分析数据,你认为应该选( )同学参加学校的投篮比赛。
27.某商店2019年8至12月衬衫和羊毛衫两种商品销售情况统计图如下∶
(1)( )月羊毛衫销量最高,衬衫销量最高的是( )月。
(2)( )月羊毛衫与衬衫销量相差最大,相差( )件。
(3)( )月到( )月这两个相邻的月份羊毛衫销量增长幅度最大。
(4)这个商店8至12月平均每月卖出羊毛衫多少件?
28.下面是育才小学和解放小学2016~2020年购书情况统计表。
年份(年)
2016
2017
2018
2019
2020
育才小学(册)
800
1000
1100
1300
1500
解放小学(册)
600
700
1000
1300
1600
2016~2020年两校购书情况统计图
(1)根据统计表提供的数据把统计图补充完整。
(2)解放小学2020年购书的本数比2016年多( )本。
(3)从图中可以看出育才小学和解放小学购书数量呈现逐年( )的趋势。
(4)请你再提出一个数学问题。
1.小时
【分析】
小青比小明少花小时,所以小明花的时间-=小青花的时间,小青花的时间+=小王花的时间;据此解答即可。
【详解】
-+
=-+
=
答:小王花了小时到达体育馆。
【点睛】
异分母分数相加
解析:小时
【分析】
小青比小明少花小时,所以小明花的时间-=小青花的时间,小青花的时间+=小王花的时间;据此解答即可。
【详解】
-+
=-+
=
答:小王花了小时到达体育馆。
【点睛】
异分母分数相加减,先化为同分母分数,再按分母不变,分子相加减进行计算
2.【分析】
将这块地看作单位“1”,用1-第一天耕这块地的几分之几-第二天耕这块地的几分之几=还剩这块地的几分之几。
【详解】
1--
=1--
=
答:还剩下这块地的没有耕。
【点睛】
异分母分数
解析:
【分析】
将这块地看作单位“1”,用1-第一天耕这块地的几分之几-第二天耕这块地的几分之几=还剩这块地的几分之几。
【详解】
1--
=1--
=
答:还剩下这块地的没有耕。
【点睛】
异分母分数相加减,先通分再计算。
3.一等奖:;二等奖:;三等奖:
【分析】
由题意,可把获奖总人数看作单位“1”,因为一、二等奖的获奖人数占获奖总人数的,则求三等奖人数的分率可列式为:1-;又已知二、三等奖的获奖人数也占获奖总人数的,
解析:一等奖:;二等奖:;三等奖:
【分析】
由题意,可把获奖总人数看作单位“1”,因为一、二等奖的获奖人数占获奖总人数的,则求三等奖人数的分率可列式为:1-;又已知二、三等奖的获奖人数也占获奖总人数的,则求一等奖人数的分率可列式为:1-;最后求二等奖人数的分率可列式为:+-1。
【详解】
三等奖人数的分率:1-=
一等奖人数的分率:1-=
二等奖人数的分率:
+-1
=-1
=
答:一、二、三等奖的获奖人数各占获奖总人数的、、。
【点睛】
在解答本题的过程中,一方面训练了分数的加减运算能力;一方面也考查了学生对于“容斥原理”的理解和掌握。
4.千米
【分析】
由题意可知,用第一周修的路程+第二周修的路程-千米=第三周修的路程,据此可解答。
【详解】
+-
=
=-
=
=(千米)
答:第三周修了千米。
【点睛】
本题考查分数的加减法,注意
解析:千米
【分析】
由题意可知,用第一周修的路程+第二周修的路程-千米=第三周修的路程,据此可解答。
【详解】
+-
=
=-
=
=(千米)
答:第三周修了千米。
【点睛】
本题考查分数的加减法,注意异分母分数加减法要先通分再计算。
5.3900棵
【分析】
设柏树有x棵,则松树有1.5x棵,根据柏树和松树一共有6500棵,列出方程求出柏树的棵数,进而得出松树的棵数即可。
【详解】
解:设柏树有x棵,则松树有1.5x棵,根据题意可得
解析:3900棵
【分析】
设柏树有x棵,则松树有1.5x棵,根据柏树和松树一共有6500棵,列出方程求出柏树的棵数,进而得出松树的棵数即可。
【详解】
解:设柏树有x棵,则松树有1.5x棵,根据题意可得:
x+1.5x=6500
2.5x=6500
x=2600
1.5x=1.5×2600=3900
答:松树有3900棵。
【点睛】
本题主要考查列方程解含有两个未知数的问题,找出等量关系式列出方程是解题的关键。
6.圆珠笔的单价是多少元?
2.6元
【分析】
可以提圆珠笔的单价是多少元,再根据钢笔单价-圆珠笔单价=6.5元列出方程解答即可。
【详解】
问题:圆珠笔的单价是多少元?
解:设:圆珠笔的单价是x元,则
解析:圆珠笔的单价是多少元?
2.6元
【分析】
可以提圆珠笔的单价是多少元,再根据钢笔单价-圆珠笔单价=6.5元列出方程解答即可。
【详解】
问题:圆珠笔的单价是多少元?
解:设:圆珠笔的单价是x元,则钢笔单价是3.5x元。
3.5x-x=6.5
2.5x=6.5
x=2.6
答:圆珠笔的单价是2.6元。
【点睛】
本题考查列方程解决问题,解答本题的关键是掌握列方程解决问题的方法。
7.四年级200人;五年级280人
【分析】
根据题意可知“五年级人数=四年级人数×1.4”,“五年级人数-四年级人数=80”,据此列方程解答即可。
【详解】
解:设四年级有学生x人,则五年级有1.4x
解析:四年级200人;五年级280人
【分析】
根据题意可知“五年级人数=四年级人数×1.4”,“五年级人数-四年级人数=80”,据此列方程解答即可。
【详解】
解:设四年级有学生x人,则五年级有1.4x人;
1.4x-x=80
0.4x=80
x=200
200×1.4=280(人)
答:四年级有200人,五年级有280人。
【点睛】
明确五年级和四年级的人数关系是解答本题的关键。
8.百合花400枝,牡丹花480枝
【分析】
根据题意可知,用它们的倍比关系解设,用它们的和列方程,据此解答。
【详解】
解:设购进百合花x枝,则购进牡丹花1.2x枝。
x+1.2x=880
x=400
解析:百合花400枝,牡丹花480枝
【分析】
根据题意可知,用它们的倍比关系解设,用它们的和列方程,据此解答。
【详解】
解:设购进百合花x枝,则购进牡丹花1.2x枝。
x+1.2x=880
x=400
400×1.2=480(枝)
答:购进百合花400枝,牡丹花480枝。
【点睛】
此题属于和倍问题,解答此题关键是用它们的倍比关系解设,用它们的和差列方程。
9.288平方米
【分析】
通过观察图形,我们可将中间的小路去除,将右侧图形向左侧平移,即可与左侧图形拼成一个新的长方形,新长方形的长减少1米,即可按照长方形面积=长×宽解答。
【详解】
12×(25-
解析:288平方米
【分析】
通过观察图形,我们可将中间的小路去除,将右侧图形向左侧平移,即可与左侧图形拼成一个新的长方形,新长方形的长减少1米,即可按照长方形面积=长×宽解答。
【详解】
12×(25-1)
=12×24
=288(平方米)
答:种植花草的面积有288平方米。
【点睛】
此题考查了学生解题的平移思想,根据平移即可将不规则图形变为规则图形,然后进行解答即可。
10.400米
【分析】
由于甲、乙两人分别从圆形跑道直径AB两端同时出发相向而行,则第一次相遇时二人共行了半个圆周,甲行了AC=75米,即每行半个圆周,甲就行75米,第二次相遇,二人共行了1.5个圆周,
解析:400米
【分析】
由于甲、乙两人分别从圆形跑道直径AB两端同时出发相向而行,则第一次相遇时二人共行了半个圆周,甲行了AC=75米,即每行半个圆周,甲就行75米,第二次相遇,二人共行了1.5个圆周,则甲应该行:75×3=225米,即:AD=225米,又:BD=25米,所以所以半个圆周:AB=AD-BD=225-25=200(米),由此即能求出圆的周长。
【详解】
(75×3-25)×2
=(225-25)×2
=200×2
=400(米)
答:圆形跑道的长是400米。
【点睛】
明确所给条件求出圆的周长是完成本题的关键.本题通过画图分析更直观一些。
11.3米;11段
【分析】
根据题意,可计算出12与21的最大公因数,即是每小段圆木的最长,然后再用12除以最大公因数的商加上20除以最大公因数的商,即是一共截成的段数,列式解答即可得到答案。
【详解】
解析:3米;11段
【分析】
根据题意,可计算出12与21的最大公因数,即是每小段圆木的最长,然后再用12除以最大公因数的商加上20除以最大公因数的商,即是一共截成的段数,列式解答即可得到答案。
【详解】
12=2×2×3,
21=3×7,
所以12与21最大公因数是3,即每小段最长是3米;
12÷3+21÷3
=4+7
=11(段);
答:每小段最长是3米,一共可以截成11段.
【点睛】
解答此题的关键是利用求最大公因数的方法计算出每小段的最长,然后再计算每根铁丝可以截成的段数,再相加即可。
12.60厘米;20块
【分析】
把长15厘米,宽12厘米的长方形纸,拼成一个正方形。求正方形的边长是多少厘米,就是求长15和宽12的最小公倍数是60;要求至少需多少张,用最小公倍数即边长60,横着放,一
解析:60厘米;20块
【分析】
把长15厘米,宽12厘米的长方形纸,拼成一个正方形。求正方形的边长是多少厘米,就是求长15和宽12的最小公倍数是60;要求至少需多少张,用最小公倍数即边长60,横着放,一行放60÷15=4块,一列为60÷12=5块,所以最后就断定是4×5=20块.据此解答。
【详解】
15=3×5
12=2×2×3
所以15和12的最小公倍数是:2×2×3×5=60,
答:正方形的边长最小是60厘米。
(60÷15)×(60÷12)
=4×5
=20(张)
答:至少需要20张这样的长方形纸。
【点睛】
本题考查了最小公倍数在生活中的实际应用。长方形拼正方形,求正方形最小边长就是求长方形长、宽的最小公倍数。
13.28排
【分析】
根据题意可知,每排可坐18人,五年级坐26排,五年级坐的人数是18×26,设六年级坐x排,六年级人数有18x人,五年级和六年级一共972人,列方程:18×26+18x=972,解方
解析:28排
【分析】
根据题意可知,每排可坐18人,五年级坐26排,五年级坐的人数是18×26,设六年级坐x排,六年级人数有18x人,五年级和六年级一共972人,列方程:18×26+18x=972,解方程,即可解答。
【详解】
解:设六年级做x排
18×26+18x=972
468+18x=972
18x=972-468
18x=504
x=504÷18
x=28
答:六年级坐了28排。
【点睛】
本题考查等量关系,根据题意找出相关的量,列方程,解方程。
14.排球:24个;篮球72个
【分析】
根据题目可知,可以设排球的数量为x个,则篮球的个数是3x个,由于篮球的个数-排球的个数=48,把数代入等式即可列方程,再解方程即可。
【详解】
解:设排球的数量有
解析:排球:24个;篮球72个
【分析】
根据题目可知,可以设排球的数量为x个,则篮球的个数是3x个,由于篮球的个数-排球的个数=48,把数代入等式即可列方程,再解方程即可。
【详解】
解:设排球的数量有x个,则篮球的个数为3x个。
3x-x=48
2x=48
x=48÷2
x=24
24×3=72(个)
答:学校买来排球24个,篮球72个。
【点睛】
此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子表示,然后列方程解答。
15.甲136万只;乙44万只
【分析】
设乙工厂生产了x万只医用口罩,则甲工厂生产了(3x+4)万只医用口罩,根据“甲、乙两医疗器材工厂在期间共生产了180万只医用口罩”,列出方程求解即可。
【详解】
解析:甲136万只;乙44万只
【分析】
设乙工厂生产了x万只医用口罩,则甲工厂生产了(3x+4)万只医用口罩,根据“甲、乙两医疗器材工厂在期间共生产了180万只医用口罩”,列出方程求解即可。
【详解】
解:设乙工厂生产了x万只医用口罩,则甲工厂生产了(3x+4)万只医用口罩
(3x+4)+x=180
4x=180-4
x=176÷4
x=44
44×3+4=136(万只)
答:甲工厂生产了136万只医用口罩,乙工厂生产了44万只医用口罩。
【点睛】
本题主要考查列方程解含有两个未知数的问题,解题的关键是找出等量关系式。
16.黄花有27朵;红花有9朵
【分析】
由题意可知,黄花的朵数是红花的3倍,设红花有x朵,黄花有3x朵,黄花的朵数-红花的朵数=18;据此列方程解答。
【详解】
解:设红花有x朵;
3x-x=18
2x
解析:黄花有27朵;红花有9朵
【分析】
由题意可知,黄花的朵数是红花的3倍,设红花有x朵,黄花有3x朵,黄花的朵数-红花的朵数=18;据此列方程解答。
【详解】
解:设红花有x朵;
3x-x=18
2x=18
x=9
9×3=27
答:黄花有27朵,红花有9朵。
【点睛】
用方程解答的关键是认真分析题意,找出等量关系列方程。
17.2小时
【分析】
根据“时间=路程÷速度”,用甲、乙两地的距离(380千米),除以客车、货车的速度之和就是两车相遇的时间。
【详解】
380÷(110+80)
=380÷190
=2(小时)
答:2
解析:2小时
【分析】
根据“时间=路程÷速度”,用甲、乙两地的距离(380千米),除以客车、货车的速度之和就是两车相遇的时间。
【详解】
380÷(110+80)
=380÷190
=2(小时)
答:2小时可以相遇。
【点睛】
解答此题的关键是路程、速度、时间三者之间的关系。
18.60千米
【分析】
用总路程÷相遇时间,求出两车速度和,速度和-货车速度=客车速度,据此列式解答。
【详解】
350÷3.5-40
=100-40
=60(千米)
答:客车每小时行60千米。
【点睛
解析:60千米
【分析】
用总路程÷相遇时间,求出两车速度和,速度和-货车速度=客车速度,据此列式解答。
【详解】
350÷3.5-40
=100-40
=60(千米)
答:客车每小时行60千米。
【点睛】
关键是理解速度、时间、路程之间的关系。
19.26千米/时
【分析】
可以设货车每小时行x千米,根据相遇问题的公式:路程=速度和×时间,由此即可列方程:(x+64)×6=540,根据等式的性质解方程即可。
【详解】
解:设货车每小时行x千米
(
解析:26千米/时
【分析】
可以设货车每小时行x千米,根据相遇问题的公式:路程=速度和×时间,由此即可列方程:(x+64)×6=540,根据等式的性质解方程即可。
【详解】
解:设货车每小时行x千米
(x+64)×6=540
x+64=540÷6
x+64=90
x=90-64
x=26
答:货车每小时行26千米。
【点睛】
本题主要考查相遇问题的公式,熟练掌握相遇问题的公式并灵活运用。
20.5小时
【分析】
等量关系式:(甲车速度+乙车速度)×相遇时间=总路程,据此列式计算。
【详解】
解:设经过x小时两车相遇。
(110+90)x=500
200x=500
x=500÷200
x=2
解析:5小时
【分析】
等量关系式:(甲车速度+乙车速度)×相遇时间=总路程,据此列式计算。
【详解】
解:设经过x小时两车相遇。
(110+90)x=500
200x=500
x=500÷200
x=2.5
答:经过2.5小时两车相遇。
【点睛】
根据相遇问题计算公式列出等量关系式是解答本题的关键。
21.36平方米
【分析】
这条小路的面积就是这个内圆半径为5米,外圆半径为5+2=7米的圆环的面积,由此利用圆环的面积公式即可计算。
【详解】
5+2=7(米)
所以小路的面积为:3.14×(72-52
解析:36平方米
【分析】
这条小路的面积就是这个内圆半径为5米,外圆半径为5+2=7米的圆环的面积,由此利用圆环的面积公式即可计算。
【详解】
5+2=7(米)
所以小路的面积为:3.14×(72-52)
=3.14×(49-25)
=3.14×24
=75.36(平方米)
答:小路的面积是75.36平方米。
【点睛】
此题重点是明确小路的面积就是外圆半径7米,内圆半径5米的圆环的面积。
22.36平方米
【分析】
求小路的面积即求圆环的面积,内圆半径是10÷2=5米,内圆半径加上小路的宽即外圆半径,根据环形面积公式S=π(R2-r2),代入公式计算即可。
【详解】
10÷2=5(米)
5
解析:36平方米
【分析】
求小路的面积即求圆环的面积,内圆半径是10÷2=5米,内圆半径加上小路的宽即外圆半径,根据环形面积公式S=π(R2-r2),代入公式计算即可。
【详解】
10÷2=5(米)
5+2=7(米)
3.14×(72-52)
=3.14×24
=75.36(平方米)
答:这条小路的面积是75.36平方米。
【点睛】
此题考查了圆环的面积公式的灵活应用,这里关键是把实际问题转化成数学问题中,并找到对应的数量关系。
23.98平方米
【分析】
根据求环形面积的公式,外圆面积-内圆面积=环形面积,已知内圆直径是6米,环宽是1米,先求出内圆半径和外圆半径,再利用环形面积公式解答。
【详解】
如下图:
内圆半径是:6÷2
解析:98平方米
【分析】
根据求环形面积的公式,外圆面积-内圆面积=环形面积,已知内圆直径是6米,环宽是1米,先求出内圆半径和外圆半径,再利用环形面积公式解答。
【详解】
如下图:
内圆半径是:6÷2=3(米);
3.14×[(3+1)2-32]
=3.14×[16-9]
=3.14×7
=21.98(平方米)
答:石子路的面积有21.98平方米。
【点睛】
此题考查了环形面积的实际应用,直接根据环形面积的计算公式解答即可。
24.(1)15.7米
(2)17.27平方米
【分析】
(1)根据题图可知,求出至少需要多长的栅栏就是求圆周长的一半,据此解答即可;
(2)分别求出扩建前后羊圈的面积,再相减即可。
【详解】
(1)2×
解析:(1)15.7米
(2)17.27平方米
【分析】
(1)根据题图可知,求出至少需要多长的栅栏就是求圆周长的一半,据此解答即可;
(2)分别求出扩建前后羊圈的面积,再相减即可。
【详解】
(1)2×3.14×5÷2
=31.4÷2
=15.7(米);
答:做这个羊圈至少需要15.7米的栅栏;
(2)扩建后的半径:(5×2+2)÷2
=12÷2
=6(米);
3.14×6²÷2-3.14×5²÷2
=56.52-39.25
=17.27(立方米);
答:羊圈的面积增加17.27平方米。
【点睛】
熟记圆的周长和面积的计算公式是解答本题的关键。
25.(1)见详解
(2)105
(3)3;4
(4)5;4
【分析】
(1)根据复式折线统计图的特点,结合统计表的数据绘制即可;
(2)通过统计图分析,甲市6月降水量最多,110毫米,3月份降水量最少,
解析:(1)见详解
(2)105
(3)3;4
(4)5;4
【分析】
(1)根据复式折线统计图的特点,结合统计表的数据绘制即可;
(2)通过统计图分析,甲市6月降水量最多,110毫米,3月份降水量最少,5毫米,用110-5算出结果即可;
(3)通过统计图观察,找出两个月份降水量相差的最多(或者直线越趋近于竖直),即降水量增加的最多。
(4)找出甲、乙两市降水量相差的最少,即最接近,降水量差值越大,则相差越大。由此即可解答。
【详解】
(1)
(2)110-5=105(毫米)
(3)通过统计图可知,乙市从3月份到4月份降水量增加最多;
(4)5月份甲、乙两市的降水量最接近,4月份甲、乙两市的降水量相差最大。
【点睛】
本题主要考查绘制复式条形统计图以及数据分析,学会灵活分析统计图。
26.(1)见详解
(2)乙
【分析】
(1)根据统计表提供的数据,绘制统计图;
(2)根据统计图提供的信息,选出哪位同学参加比赛。
【详解】
(1)
(2)根据统计图可知,乙同学的投篮成绩逐步上升,选
解析:(1)见详解
(2)乙
【分析】
(1)根据统计表提供的数据,绘制统计图;
(2)根据统计图提供的信息,选出哪位同学参加比赛。
【详解】
(1)
(2)根据统计图可知,乙同学的投篮成绩逐步上升,选乙同学参加比赛。
【点睛】
本题考查折线统计图的绘制,以及根据统计图提供的信息,解答问题。
27.(1)11;12
(2)11;35
(3)9;10
(4)61件
【分析】
(1)折线统计图以折线的上升或下降来表示统计数量增减变化。看折线的最高点所在的月份即可;
(2)两条折线的距离越远表示差距
解析:(1)11;12
(2)11;35
(3)9;10
(4)61件
【分析】
(1)折线统计图以折线的上升或下降来表示统计数量增减变化。看折线的最高点所在的月份即可;
(2)两条折线的距离越远表示差距越大;(如果图中不明显则需要一一计算。)
(3)折线越陡表示增长幅度越大;
(4)8至12月卖出羊毛衫的总量除以5即可。
【详解】
(1)11月羊毛衫销量最高,衬衫销量最高的是12月。
(2)95-60=35(件)
11月羊毛衫与衬衫销量相差最大,相差35件。
(3)9月到10月这两个相邻的月份羊毛衫销量增长幅度最大。
(4)这个商店8至12月平均每月卖出羊毛衫多少件?
(10+30+80+95+90)÷5
=305÷5
=61(件)
答:这个商店8至12月平均每月卖出羊毛衫61件。
【点睛】
此题主要考查的是如何从复式折线统计图中获取信息,然后再根据信息进行分析、计算即可。
28.(1)见详解
(2)1000本
(3)上升
(4)见详解
【分析】
(1)找到对应年份两个学校购书的具体数量,然后描点连线即可。
(2)解放小学2020年购书的本数减去2016年购书的本数即可;
(
解析:(1)见详解
(2)1000本
(3)上升
(4)见详解
【分析】
(1)找到对应年份两个学校购书的具体数量,然后描点连线即可。
(2)解放小学2020年购书的本数减去2016年购书的本数即可;
(3)根据统计图即可观察出两个学校购书数量逐年上升;
(4)任意提一个问题并且解答即可。例如:育才小学2020年购书的本数比2016年多多少本?(答案不唯一)
【详解】
(1)
(2)1600-600=1000(本)
(3)从图中可以看出育才小学和解放小学购书数量呈现逐年上升的趋势。
(4)育才小学2020年购书的本数比2016年多多少本?
1500-800=700(本)
答:育才小学2020年购书的本数比2016年多700本。
【点睛】
本题主要考查复式折线统计图,学会观察复式折线统计图并能够分析数据。
展开阅读全文