资源描述
2023年人教版中学七7年级下册数学期末复习
一、选择题
1.下列图形中,和不是内错角的是( )
A.
B.
C.
D.
2.在下面的四幅图案中,能通过图案(1)平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中,点(3,-3)所在的象限是( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题是假命题的是( )
A.同位角相等,两直线平行
B.三角形的一个外角等于与它不相邻的两个内角的和
C.平行于同一条直线的两条直线平行
D.平面内,到一个角两边距离相等的点在这个角的平分线上
5.如图,直线、相交于点,.若,则等于( )
A.70° B.110° C.90° D.120°
6.下列说法错误的是( )
A.的平方根是 B.的值是
C.的立方根是 D.的值是
7.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与互余的角共有( )
A.0个 B.1个 C.2个 D.3个
8.如图,在平面直角坐标系中,,,,,把一条长为个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点处,并按…的规律绕在四边形的边上,则细线另一端所在位置的点的坐标是( )
A. B. C. D.
九、填空题
9.算术平方根等于本身的实数是__________.
十、填空题
10.已知点与点关于轴对称,那么________.
十一、填空题
11.如图,分别作和的角平分线交于点,称为第一次操作,则_______;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,则______.
十二、填空题
12.如图所示,直线AB,BC,AC两两相交,交点分别为A,B,C,点D在直线AB上,过点D作DE∥BC交直线AC于点E,过点E作EF∥AB交直线BC于点F,若∠ABC=50°,则∠DEF的度数___.
十三、填空题
13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC,,,点D是AB边上的固定点(),请在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,使EF与三角形ABC的一边平行,则为________度.
十四、填空题
14.a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,……,以此类推,则a2020=______
十五、填空题
15.若点P在轴上,则点P的坐标为____.
十六、填空题
16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.
十七、解答题
17.计算:(1)||+2;
(2)
十八、解答题
18.已知,,求下列各式的值
;
十九、解答题
19.请补全推理依据:如图,已知:,,求证:.
证明:
∵(已知)
∴( )
∴( )
又∵(已知)
∴( )
∴( )
∴( )
二十、解答题
20.在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.
(1)将△ ABC先向下平移2个单位长度,再向右平移5个单位长度得到△ A1B1C1,画出△ A1B1C1.
(2)求△ A1B1C1的面积.
二十一、解答题
21.(1)如果是的整数部分,是的小数部分,求的平方根.
(2)当为何值时,关于的方程的解与方程的解互为相反数.
二十二、解答题
22.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
二十三、解答题
23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.
(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,
①试判断PM与MN的位置关系,并说明理由;
②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)
(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)
二十四、解答题
24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由.
(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)
(3)如图3,直线上有两点A、C,分别引两条射线、.,,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t.
二十五、解答题
25.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,
如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角解答.
【详解】
解:A、∠1和∠2是内错角,故选项不合题意;
B、∠1和∠2不是内错角,故选项符合题意;
C、∠1和∠2是内错角,故选项不合题意;
D、∠1和∠2是内错角,故选项不合题意;
故选B.
【点睛】
本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
2.C
【分析】
平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.
【详解】
解:A、对应点的连线相交,不能通过平移得到,不符合题意;
B、对应点的连线相交,不能通过平移得到,不符合题
解析:C
【分析】
平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.
【详解】
解:A、对应点的连线相交,不能通过平移得到,不符合题意;
B、对应点的连线相交,不能通过平移得到,不符合题意;
C、可通过平移得到,符合题意;
D、对应点的连线相交,不能通过平移得到,不符合题意;
故选:C.
【点睛】
本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.
3.D
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
点(3,-3)的横坐标为正数,纵坐标为负数,
所以点(3,-3)所在的象限是第四象限,
故选D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项.
【详解】
解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;
B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;
C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;
D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;
故选:D.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大.
5.B
【分析】
先根据平行线的性质得到,然后根据平角的定义解答即可.
【详解】
解:∵,
∴,
∵,
∴.
故选:B.
【点睛】
本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键.
6.B
【分析】
根据算术平方根与平方根、立方根的性质逐项判断即可得.
【详解】
A、的平方根是,此项说法正确;
B、的值是4,此项说法错误;
C、的立方根是,此项说法正确;
D、的值是,此项说法正确;
故选:B.
【点睛】
本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键.
7.B
【分析】
由互余的定义、平行线的性质,利用等量代换求解即可.
【详解】
解:∵斜边与这根直尺平行,
∴∠α=∠2,
又∵∠1+∠2=90°,
∴∠1+∠α=90°,
又∠α+∠3=90°
∴与α互余的角为∠1和∠3.
故选:B.
【点睛】
此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.
8.C
【分析】
先求出四边形ABCD的周长为10,得到2018÷10的余数为8,由此即可解决问题.
【详解】
解:∵A(1,1),B(−1,1),C(−1,−2),D(1,−2),
∴AB=1−(−1
解析:C
【分析】
先求出四边形ABCD的周长为10,得到2018÷10的余数为8,由此即可解决问题.
【详解】
解:∵A(1,1),B(−1,1),C(−1,−2),D(1,−2),
∴AB=1−(−1)=2,BC=1−(−2)=3,CD=1−(−1)=2,DA=1−(−2)=3,
∴绕四边形ABCD一周的细线长度为2+3+2+3=10,
2018÷10=201…8,
∴细线另一端在绕四边形第202圈的第8个单位长度的位置,
即细线另一端所在位置的点在D处上面1个单位的位置,坐标为(1,−1).
故选:C.
【点睛】
本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2018个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.
九、填空题
9.0或1
【详解】
根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.
解:1和0的算术平方根等于本身.
故答案为1和0
“点睛”本题考查了算术平方根的知
解析:0或1
【详解】
根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.
解:1和0的算术平方根等于本身.
故答案为1和0
“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.
十、填空题
10.0;
【分析】
平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.
【详解】
解:根据对称的性质,得,
解得.
故答案为:0.
【点睛】
考查了关于轴、轴对称的点的坐标,
解析:0;
【分析】
平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.
【详解】
解:根据对称的性质,得,
解得.
故答案为:0.
【点睛】
考查了关于轴、轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.
十一、填空题
11.90°
【分析】
过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠E
解析:90°
【分析】
过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠EP1F,再同理求出∠P2,∠P3,总结规律可得.
【详解】
解:过P1作P1Q∥AB,则P1Q∥CD,
∵AB∥CD,
∴∠AEF+∠CFE=180°,
∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,
∵和的角平分线交于点,
∴∠EP1F=∠EP1Q+∠FP1Q=∠AEP1+∠CFP1=(∠AEF+∠CFE)=90°;
同理可得:∠P2=(∠AEF+∠CFE)=45°,
∠P3=(∠AEF+∠CFE)=22.5°,
...,
∴,
故答案为:90°,.
【点睛】
本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.
十二、填空题
12.130°.
【分析】
先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.
【详解】
解:∵DE∥BC,
∴∠ABC=∠ADE=50°(两直线平行,同位角相等),
∵E
解析:130°.
【分析】
先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.
【详解】
解:∵DE∥BC,
∴∠ABC=∠ADE=50°(两直线平行,同位角相等),
∵EF∥AB,
∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),
∴∠DEF=180°﹣50°=130°.
故答案为:130°.
【点睛】
本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.
十三、填空题
13.35°或75°或125°
【分析】
由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折
解析:35°或75°或125°
【分析】
由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.
【详解】
解:当EF∥AB时,
∠BDE=∠DEF,
由折叠可知:∠DEF=∠DEB,
∴∠BDE=∠DEB,又∠B=30°,
∴∠BDE=(180°-30°)=75°;
当EF∥AC时,
如图,∠C=∠BEF=50°,
由折叠可知:∠BED=∠FED=25°,
∴∠BDE=180°-∠B=∠BED=125°;
如图,EF∥AC,
则∠C=∠CEF=50°,
由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,
则∠CED+50°=180°-∠CED,
解得:∠CED=65°,
∴∠BDE=∠CED-∠B=65°-30°=35°;
综上:∠BDE的度数为35°或75°或125°.
【点睛】
本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.
十四、填空题
14..
【分析】
先根据题意求得、、、,发现规律即可求解.
【详解】
解:∵a1=3
∴,,,,
∴该数列为每4个数为一周期循环,
∵
∴a2020=.
故答案为:.
【点睛】
此题主要考查规律的探索,
解析:.
【分析】
先根据题意求得、、、,发现规律即可求解.
【详解】
解:∵a1=3
∴,,,,
∴该数列为每4个数为一周期循环,
∵
∴a2020=.
故答案为:.
【点睛】
此题主要考查规律的探索,解题的关键是根据题意发现规律.
十五、填空题
15.(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐
解析:(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐标为(4,0).
故答案为:(4,0).
【点睛】
本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
十六、填空题
16.(10,44)
【分析】
该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4
解析:(10,44)
【分析】
该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…,
【详解】
解:由题意,粒子运动到点(3,0)时经过了15秒,
设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an,
则a1=2,a2=6,a3=12,a4=20,…,
a2-a1=2×2,
a3-a2=2×3,
a4-a3=2×4,
…,
an-an-1=2n,
各式相加得:
an-a1=2(2+3+4+…+n)=n2+n-2,
∴an=n(n+1).
∵44×45=1980,故运动了1980秒时它到点A44(44,44);
又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动.
故达到A44(44,44)时向左运动34秒到达点(10,44),
即运动了2014秒.所求点应为(10,44).
故答案为:(10,44).
故答案为:15,(10,44).
【点睛】
本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.
十七、解答题
17.(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算
解析:(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.
十八、解答题
18.(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解
解析:(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键.
十九、解答题
19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据平行线的判定定理以及性质定理证明即可.
【详解】
证明:∵∠1+∠2=180
解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据平行线的判定定理以及性质定理证明即可.
【详解】
证明:∵∠1+∠2=180°(已知),
∴AD∥EF(同旁内角互补,两直线平行),
∴∠3=∠D(两直线平行,同位角相等),
又∵∠3=∠A(已知),
∴∠D=∠A(等量代换),,
∴AB∥CD(内错角相等,两直线平行),
∴∠B=∠C(两直线平行,内错角相等).
故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.
【点睛】
本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.
二十、解答题
20.(1)见解析;(2)
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)依据割补法进行计算,即可得到三角形ABC的面积.
【详解】
解:(1)如图所示,三角形A1B1C1即为所求
解析:(1)见解析;(2)
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)依据割补法进行计算,即可得到三角形ABC的面积.
【详解】
解:(1)如图所示,三角形A1B1C1即为所求;
(2)如图所示,△A1B1C1的面积==.
【点睛】
本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.
二十一、解答题
21.(1)±3;(2)m=-4
【分析】
(1)估算,得到的范围,从而确定x、y的值,再代入计算即可.
(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可.
【详
解析:(1)±3;(2)m=-4
【分析】
(1)估算,得到的范围,从而确定x、y的值,再代入计算即可.
(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可.
【详解】
解:(1)∵,
∴,
∴,
∴x=6,y=,
∴=9,
∴的的平方根为±3;
(2),
解得:x=-9,
∴的解为x=9,代入,
得,
解得:m=-4.
【点睛】
本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程的解.
二十二、解答题
22.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
,
解得:,
∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴正方形的边长是米,
∵<3,
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
二十三、解答题
23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条
解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;
②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;
(2)分三种情况讨论,利用平行线的性质即可解决.
【详解】
解:(1)①PM⊥MN,理由见解析:
∵AB//CD,
∴∠APM=∠PMQ,
∵∠APM+∠QMN=90°,
∴∠PMQ +∠QMN=90°,
∴PM⊥MN;
②过点N作NH∥CD,
∵AB//CD,
∴AB// NH∥CD,
∴∠QMN=∠MNH,∠EPA=∠ENH,
∵PA平分∠EPM,
∴∠EPA=∠ MPA,
∵∠APM+∠QMN=90°,
∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,
∴∠MNQ +∠MNH +∠MNH=90°,
∵∠MNQ=20°,
∴∠MNH=35°,
∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,
∴∠EPB=180°-55°=125°,
∴∠EPB的度数为125°;
(2)当点M,N分别在射线QC,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,
∴∠APM +∠QMN=90°;
当点M,N分别在射线QC,线段PQ上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMN=90°,∠APM=∠PMQ,
∴∠PMQ -∠QMN=90°,
∴∠APM -∠QMN=90°;
当点M,N分别在射线QD,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,
∴∠APM+90°-∠QMN=180°,
∴∠APM -∠QMN=90°;
综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.
二十四、解答题
24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒
【分析】
(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;
(2)根据入射光线与镜面的夹角与反
解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒
【分析】
(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;
(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;
(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.
【详解】
解:(1)平行.理由如下:
如图1,∵∠3=∠4,
∴∠5=∠6,
∵∠1=∠2,
∴∠1+∠5=∠2+∠6,
∴a∥b(内错角相等,两直线平行);
(2)如图2:
∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,
∴∠1=∠2,
∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,
∴∠1+∠2=180°-40°-90°=50°,
∴∠1=×50°=25°,
∴MN与水平线的夹角为:25°+40°=65°,
即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;
(3)存在.
如图①,AB与CD在EF的两侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠ACD=180°-65°-3t°=115°-3t°,
∠BAC=105°-t°,
要使AB∥CD,
则∠ACD=∠BAC,
即115-3t=105-t,
解得t=5;
如图②,CD旋转到与AB都在EF的右侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠DCF=360°-3t°-65°=295°-3t°,
∠BAC=105°-t°,
要使AB∥CD,
则∠DCF=∠BAC,
即295-3t=105-t,
解得t=95;
如图③,CD旋转到与AB都在EF的左侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,
∠BAC=t°-105°,
要使AB∥CD,
则∠DCF=∠BAC,
即3t-295=t-105,
解得t=95,
此时t>105,
∴此情况不存在.
综上所述,t为5秒或95秒时,CD与AB平行.
【点睛】
本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.
二十五、解答题
25.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠
解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;
(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可.
【详解】
解:(1)∠ACB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分别是∠BAP和∠ABM角的平分线,
∴∠BAC=∠PAB,∠ABC=∠ABM,
∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,
∴∠ACB=45°;
(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,
∴∠CAB=∠BAQ,
∵AC平分∠PAB,
∴∠PAC=∠CAB,
∴∠PAC=∠CAB=∠BAO=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵将△ABC沿直线AB折叠,若点C落在直线MN上,
∴∠ABC=∠ABN,
∵BC平分∠ABM,
∴∠ABC=∠MBC,
∴∠MBC=∠ABC=∠ABN,
∴∠ABO=60°,
故答案为:30°,60°;
(3)∵AE、AF分别是∠BAO与∠GAO的平分线,
∴∠EAO=∠BAO,∠FAO=∠GAO,
∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.
在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO= ∠BAO,∠EOQ=∠BOQ,
∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,
∵有一个角是另一个角的倍,故有:
①∠EAF=∠F,∠E=30°,∠ABO=60°;
②∠F=∠E,∠E=36°,∠ABO=72°;
③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);
④∠E=∠F,∠E=54°,∠ABO=108°(舍去);
∴∠ABO为60°或72°.
【点睛】
本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.
展开阅读全文