收藏 分销(赏)

2023年人教版七7年级下册数学期末测试试卷(及答案).doc

上传人:精*** 文档编号:1892004 上传时间:2024-05-11 格式:DOC 页数:24 大小:504.54KB
下载 相关 举报
2023年人教版七7年级下册数学期末测试试卷(及答案).doc_第1页
第1页 / 共24页
2023年人教版七7年级下册数学期末测试试卷(及答案).doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述
2023年人教版七7年级下册数学期末测试试卷(及答案) 一、选择题 1.如图,属于同位角的是( ) A.与 B.与 C.与 D.与 2.下列车标图案,可以看成由图形的平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点向下平移4个单位后的坐标是,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.以下命题是真命题的是(  ) A.相等的两个角一定是对顶角 B.过直线外一点有且只有一条直线与已知直线平行 C.两条平行线被第三条直线所截,内错角互补 D.在同一平面内,垂直于同一条直线的两条直线互相垂直 5.下列几个命题中,真命题有( ) ①两条直线被第三条直线所截,内错角相等; ②如果和是对顶角,那么; ③一个角的余角一定小于这个角的补角; ④三角形的一个外角大于它的任一个内角. A.1个 B.2个 C.3个 D.4 6.下列说法正确的是( ) A.一个数的立方根有两个,它们互为相反数 B.负数没有立方根 C.任何一个数都有平方根和立方根 D.任何数的立方根都只有一个 7.如图,AB∥CD,将一块三角板(∠E=30°)按如图所示方式摆放,若∠EFH=25°,求∠HGD的度数(  ) A.25° B.30° C.55° D.60° 8.如图,在平面直角坐标系中,一动点从原点出发,向右平移3个单位长度到达点,再向上平移6个单位长度到达点,再向左平移9个单位长度到达点,再向下平移12个单位长度到达点,再向右平移15个单位长度到达点……按此规律进行下去,该动点到达的点的坐标是( ) A. B. C. D. 九、填空题 9.______. 十、填空题 10.点P(﹣2,3)关于x轴的对称点的坐标是_____. 十一、填空题 11.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是__________. 十二、填空题 12.如图,,,,则∠CAD的度数为____________. 十三、填空题 13.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 十四、填空题 14.对于有理数x、y,当x≥y时,规定x※y=yx;而当x<y时,规定x※y=y-x,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m的值为______. 十五、填空题 15.已知点的坐标(3-a,3a-1),且点到两坐标轴的距离相等,则点的坐标是_______________. 十六、填空题 16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______ 十七、解答题 17.计算: (1) (2) (3) (4) 十八、解答题 18.求下列各式中x的值: (1)(x+1)3﹣27=0 (2)(2x﹣1)2﹣25=0 十九、解答题 19.已知如图,,,,,求证:. 完成下面的证明过程: 证明:∵, ∴(______________________________) ∵____________________(已知) ∴.(______________________________) ∴. ∵,(已知) ∴ 又∵, ∴, ∴,(______________________________) ∴.(______________________________) 二十、解答题 20.如图,三角形的顶点都在格点上,将三角形向右平移5个单位长度,再向上平移3个单位长度请回答下列问题: (1)平移后的三个顶点坐标分别为:______,______,______; (2)画出平移后三角形; (3)求三角形的面积. 二十一、解答题 21.阅读下面的对话,解答问题: 事实上:小慧的表示方法有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵ ,即 ,∴ 的整数部分为2,小数部分为 . 请解答: (1) 的整数部分_____,小数部分可表示为________. (2)已知:10-=x+y,其中x是整数,且0<y<1,求x-y的相反数. 二十二、解答题 22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形. (1)拼成的正方形的面积与边长分别是多少? (2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少? (3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长 二十三、解答题 23.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC. (1)在动点A运动的过程中,  (填“是”或“否”)存在某一时刻,使得AD平分∠EAC? (2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由; (3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系. 二十四、解答题 24.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN. (1)如图①,求∠MPQ的度数(用含α的式子表示); (2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由; (3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由. 二十五、解答题 25.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2. 解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 . 拓展延伸: (1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 . (2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 . 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据同位角、内错角、同旁内角的意义进行判断即可. 【详解】 解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A符合题意. ∠1与∠4是对顶角,因此选项B不符合题意. ∠1与∠3是内错角,因此选项C不符合题意. ∠2与∠4同旁内角,因此选项D不符合题意. 故选:A. 【点睛】 本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提. 2.A 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”平移得到,故本选项符合题意; B、不是由一个“基本图案”平移得到,故本选项 解析:A 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”平移得到,故本选项符合题意; B、不是由一个“基本图案”平移得到,故本选项不符合题意; C、可以由一个“基本图案”旋转得到,故本选项不符合题意; D、可以由一个“基本图案”旋转得到,故本选项不符合题意. 故选:A. 【点睛】 本题主要考查了图形的平移和旋转,准确分析判断是解题的关键. 3.B 【分析】 根据向下平移,纵坐标减,求出点的坐标,再根据各象限内点的特征解答. 【详解】 解:设点P纵坐标为y, 点向下平移4个单位后的坐标是, , ∴ 点的坐标为, 点在第二象限. 故选:B. 【点睛】 本题考查了坐标与图形的变化平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求出点的坐标是解题的关键. 4.B 【分析】 利用对顶角的定义、平行线的性质等知识分别判断后即可确定正确的选项. 【详解】 解:A、相等的两个角不一定是对顶角,故原命题错误,是假命题,不符合题意; B、过直线外一点有且只有一条直线与已知直线平行,正确,是真命题,符合题意; C、两条平行线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意; D、在同一平面内,垂直于同一条直线的两条直线互相平行,故原命题错误,是假命题,不符合题意, 故选:B. 【点睛】 本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、平行线的性质等知识,难度不大. 5.B 【分析】 根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断. 【详解】 解:两条平行直线被第三条直线所截,内错角相等,所以①错误; 如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确; 一个角的余角一定小于这个角的补角,所以③正确; 三角形的外角大于任何一个与之不相邻的一个内角,所以④错误. 故选:B. 【点睛】 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 6.D 【分析】 根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断. 【详解】 A、一个数的立方根只有1个,故本选项错误; B、负数有立方根,故本选项错误; C、负数只有立方根,没有平方根,故本选项错误; D、任何数的立方根都只有一个,故本选项正确. 故选:D. 【点睛】 本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念. 7.C 【分析】 先根据三角形外角可求∠EHB=∠EFH+∠E=55°,根据平行线性质可得∠HGD=∠EHB=55°即可. 【详解】 解:∵∠EHB为△EFH的外角,∠EFH=25°,∠E=30°, ∴∠EHB=∠EFH+∠E=25°+30°=55°, ∵AB∥CD, ∴∠HGD=∠EHB=55°. 故选C. 【点睛】 本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键. 8.C 【分析】 求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解. 【详解】 解:由题意A1(3,0 解析:C 【分析】 求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解. 【详解】 解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••, 可以看出,9=,15=,21=, 得到规律:点A2n+1的横坐标为,其中的偶数, 点A2n+1的纵坐标等于横坐标的相反数+3, ,即, 故A2021的横坐标为,A2021的纵坐标为, ∴A2021(3033,-3030), 故选:C. 【点睛】 本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型. 九、填空题 9.10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 解析:10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 十、填空题 10.(﹣2,﹣3) 【分析】 两点关于x轴对称,那么横坐标不变,纵坐标互为相反数. 【详解】 点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数, ∴对称点的坐标是(﹣2,﹣3). 故答案为 解析:(﹣2,﹣3) 【分析】 两点关于x轴对称,那么横坐标不变,纵坐标互为相反数. 【详解】 点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数, ∴对称点的坐标是(﹣2,﹣3). 故答案为(﹣2,﹣3). 【点睛】 本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到. 十一、填空题 11.5° 【分析】 根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解. 【详解】 ∵AD⊥BC,∠C=30°, ∴∠C 解析:5° 【分析】 根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解. 【详解】 ∵AD⊥BC,∠C=30°, ∴∠CAD=90°-30°=60°, ∵AE是△ABC的角平分线,∠BAC=130°, ∴∠CAE=∠BAC=×130°=65°, ∴∠DAE=∠CAE-∠CAD=65°-60°=5°. 故答案为:5°. 【点睛】 本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键. 十二、填空题 12.【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是 解析: 【分析】 根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数. 【详解】 解:∵∥,, ∴, ∴ 故答案为: 【点睛】 本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键. 十三、填空题 13.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十四、填空题 14.或. 【分析】 根据新定义规定的式子将数值代入再计算即可; 先根据新定义的式子将数值代入分情况讨论列方程求解即可. 【详解】 解: 4※(-2)=; (-1)※1= [(-1)※1]※m= 解析:或. 【分析】 根据新定义规定的式子将数值代入再计算即可; 先根据新定义的式子将数值代入分情况讨论列方程求解即可. 【详解】 解: 4※(-2)=; (-1)※1= [(-1)※1]※m=2※m=36 当时,原式可化为 解得: ; 当时,原式可化为: 解得:; 综上所述,m的值为:或; 故答案为:16;或. 【点睛】 本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键. 十五、填空题 15.(2,2)或(4,-4). 【分析】 点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标. 【详解】 解:∵点P到两坐标轴的距离相等 ∴= ∴ 解析:(2,2)或(4,-4). 【分析】 点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标. 【详解】 解:∵点P到两坐标轴的距离相等 ∴= ∴3a-1=3-a或3a-1=-(3-a) 解得a=1或a=-1 当a=1时,3-a=2,3a-1=2; 当a=-1时,3-a=4,3a-1=-4 ∴点P的坐标为(2,2)或(4,-4). 故答案为(2,2)或(4,-4). 【点睛】 本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号. 十六、填空题 16.(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解 解析:(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解】 解:∵点A(﹣4,0),B(0,3), ∴OA=4,OB=3, ∴AB==5, ∴第(3)个三角形的直角顶点的坐标是; 观察图形不难发现,每3个三角形为一个循环组依次循环, ∴一次循环横坐标增加12, ∵2013÷3=671 ∴第(2013)个三角形是第671组的第三个直角三角形, 其直角顶点与第671组的第三个直角三角形顶点重合, ∴第(2013)个三角形的直角顶点的坐标是即. 故答案为:. 【点睛】 本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键. 十七、解答题 17.(1)6;(2)-4;(3);(4). 【分析】 (1)利用算术平方根和立方根、绝对值化简,再进一步计算即可; (2)利用算术平方根和立方根化简,再进一步计算即可; (3)类比单项式乘多项式展开计算 解析:(1)6;(2)-4;(3);(4). 【分析】 (1)利用算术平方根和立方根、绝对值化简,再进一步计算即可; (2)利用算术平方根和立方根化简,再进一步计算即可; (3)类比单项式乘多项式展开计算; (4)利用绝对值的性质化简,再进一步合并同类二次根式. 【详解】 解:(1) =3+2+1 =6; (2) =2-3-3 =-4; (3) = ; (4) = =. 故答案为(1)6;(2)-4;(3);(4). 【点睛】 本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算. 十八、解答题 18.(1)x=2;(2)x=3或x=-2. 【分析】 (1)根据立方根的定义进行求解即可; (2)根据平方根的定义进行求解,即可得出答案. 【详解】 解:(1)(x+1)3-27=0, (x+1)3=2 解析:(1)x=2;(2)x=3或x=-2. 【分析】 (1)根据立方根的定义进行求解即可; (2)根据平方根的定义进行求解,即可得出答案. 【详解】 解:(1)(x+1)3-27=0, (x+1)3=27, x+1=3, x=2; (2)(2x-1)2-25=0, (2x-1)2=25, 2x-1=±5, x=3或x=-2. 【点睛】 本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键. 十九、解答题 19.见解析 【分析】 根据平行线的判定和性质定理以及对顶角相等即可得到结论. 【详解】 解:证明:∵∠AOB=80°, ∴∠COD=∠AOB=80°(对顶角相等). ∵BC∥EF(已知), ∴∠COD+ 解析:见解析 【分析】 根据平行线的判定和性质定理以及对顶角相等即可得到结论. 【详解】 解:证明:∵∠AOB=80°, ∴∠COD=∠AOB=80°(对顶角相等). ∵BC∥EF(已知), ∴∠COD+∠1=180°(两直线平行,同旁内角互补). ∴∠1=100°. ∵∠1+∠C=160°(已知), ∴∠C=160°-∠1=60°. 又∵∠B=60°, ∴∠B=∠C. ∴AB∥CD(内错角相等,两直线平行). ∴∠A=∠D(两直线平行,内错角相等). 【点睛】 本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了对顶角的定义. 二十、解答题 20.(1),,;(2)见解析;(3) 【分析】 (1)先画出平移后的图形,结合直角坐标系可得出三点坐标; (2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC补全为长方形 解析:(1),,;(2)见解析;(3) 【分析】 (1)先画出平移后的图形,结合直角坐标系可得出三点坐标; (2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC补全为长方形,然后利用作差法求解即可. 【详解】 解:(1)平移后的三个顶点坐标分别为:,,; (2)画出平移后三角形; (3). 【点睛】 本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去. 二十一、解答题 21.(1)3,;(2) 【分析】 (1)先根据二次根式的性质求出的整数部分,则小数部分可求; (2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x- 解析:(1)3,;(2) 【分析】 (1)先根据二次根式的性质求出的整数部分,则小数部分可求; (2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-y值可求. 【详解】 解:(1)∵, ∴, ∴整数部分是3, 小数部分为:-3. 故答案为:3,-3. (2)解:∵ ∴8 10- ∵x是整数,且0<y<1, ∴x=8,y= 10--8= , ∴x-y=. ∵的相反数为:, ∴x-y的相反数是 . 【点睛】 本题主要考查了估算无理数的大小,代数式求值.解题的关键是确定无理数的整数部分即可解决问题. 二十二、解答题 22.(1)5;;(2);;(3)能,. 【分析】 (1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长. (2)求出斜边长即可. (3)一共有10个小正 解析:(1)5;;(2);;(3)能,. 【分析】 (1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长. (2)求出斜边长即可. (3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图. 【详解】 试题分析: 解:(1)拼成的正方形的面积与原面积相等1×1×5=5, 边长为, 如图(1) (2)斜边长=, 故点A表示的数为:;点A表示的相反数为: (3)能,如图 拼成的正方形的面积与原面积相等1×1×10=10,边长为. 考点:1.作图—应用与设计作图;2.图形的剪拼. 二十三、解答题 23.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD. 【分析】 (1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD 解析:(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD. 【分析】 (1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC; (2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B; (3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD. 【详解】 解:(1)是,理由如下: 要使AD平分∠EAC, 则要求∠EAD=∠CAD, 由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD, 则当∠ACB=∠B时,有AD平分∠EAC; 故答案为:是; (2)∠B=∠ACB,理由如下: ∵AD平分∠EAC, ∴∠EAD=∠CAD, ∵AD∥BC, ∴∠B=∠EAD,∠ACB=∠CAD, ∴∠B=∠ACB. (3)∵AC⊥BC, ∴∠ACB=90°, ∵∠EBF=50°, ∴∠BAC=40°, ∵AD∥BC, ∴AD⊥AC. 【点睛】 此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键. 二十四、解答题 24.(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析 【分析】 1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论; (2)根据已知条件可得2∠EPQ+2∠PEF= 解析:(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析 【分析】 1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论; (2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系; (3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可得结论. 【详解】 解:(1)如图①,过点P作PR∥AB, ∵AB∥CD, ∴AB∥CD∥PR, ∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α, ∴∠MPQ=∠MPR+∠RPQ=2α; (2)如图②,EF⊥PQ,理由如下: ∵PQ平分∠MPN. ∴∠MPQ=∠NPQ=2α, ∵QE∥PN, ∴∠EQP=∠NPQ=2α, ∴∠EPQ=∠EQP=2α, ∵EF平分∠PEQ, ∴∠PEQ=2∠PEF=2∠QEF, ∵∠EPQ+∠EQP+∠PEQ=180°, ∴2∠EPQ+2∠PEF=180°, ∴∠EPQ+∠PEF=90°, ∴∠PFE=180°﹣90°=90°, ∴EF⊥PQ; (3)如图③,∠NEF=∠AMP,理由如下: 由(2)可知:∠EQP=2α,∠EFQ=90°, ∴∠QEF=90°﹣2α, ∵∠PQN=α, ∴∠NQE=∠PQN+∠EQP=3α, ∵NE平分∠PNQ, ∴∠PNE=∠QNE, ∵QE∥PN, ∴∠QEN=∠PNE, ∴∠QNE=∠QEN, ∵∠NQE=3α, ∴∠QNE=(180°﹣∠NQE)=(180°﹣3α), ∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE =180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α) =180°﹣90°+2α﹣3α﹣90°+α =α =∠AMP. ∴∠NEF=∠AMP. 【点睛】 本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键. 二十五、解答题 25.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(1) 解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论; (2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论. 试题解析:解:解决问题 连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6. 拓展延伸: 解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2. (2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服