资源描述
2024年人教版小学四4年级下册数学期末学业水平题含解析完整
1.一个长方体,用下面三种不同的方法分别将其切成了两个完全一样的长方体。切后两个长方体的表面积总和分别比原来增加了60平方厘米、40平方厘米和48平方厘米。求原来长方体的表面积,列式正确的是( )。
A.60+40+48 B.(60+40+48)÷2 C.(60+40+48)×2 D.以上都不正确
2.从一个长1.17m,宽和高都是0.1m的长方体上锯下最大的正方体,最多可以锯( )个。
A.11 B.117 C.12 D.1170
3.一个数既是12的倍数,又是48的因数,个数不可能是( )。
A.24 B.12 C.48 D.36
4.一盒糖果,平均分给5个人,最后剩下2粒;平均分给6个人,最后还是剩下2粒。这盒糖果最少有( )粒。
A.62 B.32 C.34 D.11
5.下面这些分数中,不能化成有限小数的是( )。
A. B. C. D.
6.两根1米长的铁丝,第一根用去它的;第二根用去了米,剩下的长度相比,( )。
A.第一根剩的长 B.第二根剩的长
C.两根剩的一样长 D.无法确定剩下的长短
7.现在要烧一道:“香葱炒蛋”的菜,要七道工序.每道工序所需时间如下:敲蛋1分钟,洗葱、切葱2分钟,打蛋3分钟,洗锅2分钟,烧热锅2分钟,烧热油4分钟,炒4分钟,那么烧好这道菜最短需要( )分钟.
A.18 B.12 C.14
8.如下图,把一个六面都涂上颜色的正方体木块切成125个大小相同的小正方体,其中两面涂色的小正方体有( )个。
A.8 B.54 C.36
9.1.2立方米=(________)立方分米 780毫升=(________)立方分米
10.分母是9的最大真分数是(________),分子是9的最大假分数是(________)。
11.美术课上进行折纸活动,老师拿来一摞不超过80张的彩纸,如果把这些纸平均分给2个、3个或5个同学都能正好分完,没有剩余,这摞彩纸最多有(________)张。
12.如果的分数值是最小的质数(a、b都是不为0的自然数),那么a和b的最大公因数是(________),最小公倍数是(________)。
13.把两根长度分别是48厘米和40厘米的彩带剪成长度一样的短彩带且没有剩余,每根短彩带最长是(______)厘米,一共可以剪这样的短彩带(______)根。
14.用6个小正方体摆一个立体图形,如果从上面看到的和从前面看到的都是,一共有(________)种不同的摆法。
15.如图,一个长方体纸箱,上、下两个面是正方形,把它的侧面展开,正好是一个边长12分米的正方形,这个长方体纸箱的体积是(________)立方分米,表面积是(________)平方分米。
16.王叔叔加工的49个玩具零件中有1个是次品,它比正品略重一些,用天平最少称(______)次一定能把它找出。
17.直接写出得数。
0.75÷0.3= 4÷9= 1.7-0.45= 0.36+0.2=
4.6÷23= 2.8÷0.01=
18.计算下面各题。(能简便的用简便方法计算)
19.解方程。
① ② ③
20.谁采茶速度快?
21.暑假期间,小林每6天游泳一次,小军每8天游泳一次。7月24日两人在游池相遇,八月几日他们再次相遇?
22.食堂运来一车煤共吨,上午用去了,下午比上午多用去总数的,还剩吨。
(1)一共用去了这车煤的几分之几?
(2)用去了多少吨?
23.图中长方体的长是5厘米,宽是3厘米,高是4厘米。把这个长方体切成两个完全相同的小长方体,一共有( )种不同的切法;怎样切表面积增加最多?请在长方体上画出这种切法;算一算,表面积最多可以增加( )平方厘米。
24.一个长方体形状的蓄水池长12米,深9米,宽与深的比是2∶3。
(1)在这个蓄水池的四周抹上水泥,抹水泥的面积是多少平方米?
(2)这个蓄水池的蓄水量是多少立方米?
25.在下面方格纸上按要求画图。
(1)以虚线为对称轴,画出轴对称图形的另一半。
(2)画出把整个图形向右平移5格后的图形。
26.如下图,有一个长方体容器,其中一个侧面有一个边长3cm的正方形开口,往容器里放了一些水,然后将容器倒过来摆放,水会减少704cm3。这个容器最初放了多少立方厘米的水?(容器厚度不计)
1.A
解析:A
【分析】
三种切法增加的面积分别是2个上面的面积,2个左面的面积,2个前面的面积,所以把增加的面积加起来就是原来长方体的表面积。
【详解】
根据分析可知,原来长方体的表面积为:60+40+48。
故答案为:A
【点睛】
考查了长方体的表面积,解题的关键是分析出三种切法增加的面积。
2.A
解析:A
【分析】
从长方体上锯下一个最大的正方体,正方体的棱长应该为0.1米,用长方体的长除以正方体的棱长,求出沿长可以锯几个即可。根据实际考虑,商的近似数要采用“去尾法”。
【详解】
1.17÷0.1≈11(个);
故答案为:A。
【点睛】
明确从长方体上锯下一个最大的正方体,正方体的棱长是多少米是解答本题的关键。
3.D
解析:D
【分析】
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数,据此解答。
【详解】
A.24是12的倍数,又是48的因数;
B.12是12的倍数,又是48的因数;
C.48是12的倍数,又是48的因数;
D.36是12的倍数,不是36的因数。
故答案选:D
【点睛】
本题考查因数与倍数的意义,根据因数与倍数的意义进行解答。
4.B
解析:B
【分析】
根据题意,这盒糖果的最少粒数应比5和6的最小公倍数多2粒,据此解答。
【详解】
5和6的最小公倍数是5×6=30。
30+2=32(粒)
故答案为:B
【点睛】
本题考查最小公倍数的应用。理解“这盒糖果的最少粒数应比5和6的最小公倍数多2粒”是解题的关键。
5.A
解析:A
【分析】
一个最简分数,如果分母中除了2和5以外,不含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数;据此解答即可。
【详解】
A.:7=1×7,分母里含有质因数7,那么不能化成有限小数;
B.:8=2×2×2,分母中含有因数2,那么能化成有限小数;
C.:40=2×2×2×5,分母中含有因数2和5,那么能化成有限小数
D.:2=1×2,分母中含有因数2,那么能化成有限小数。
故答案选:A
【点睛】
此题主要考查什么样的分数可以化成有限小数,一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数。
6.C
解析:C
【分析】
分别计算出两根铁丝用去后剩下的长度,结果比较大小即可。
【详解】
第一根铁丝剩下的长度:1×(1-)=(米)
第二根铁丝剩下的长度:1-=(米)
米=米,则两根铁丝剩下的长度一样长。
故答案为:C
【点睛】
用分数乘法计算出第一根铁丝用去后剩下的长度是解答本题的关键。
7.B
解析:B
【详解】
略
8.C
解析:C
【分析】
因为53=125,所以这个正方体的棱长为5,结合图示,每条棱上各有两面涂色的小正方体3个,则12条棱上共有12×3=36(个)小正方体。
【详解】
53=125
12×3=36(个)
故答案为:C。
【点睛】
要研究表面涂色的小正方体,就要熟悉正方体的特征:它共有12条棱,6个面,8个顶点;其中顶点处的小正方体3面都涂了颜色,所以每条棱上刨去顶点处共有3个两面涂色的小正方体。
9.0.78
【分析】
根据1立方米=1000立方分米;1000毫升=1升=1立方分米。计算即可。
【详解】
1.2×1000=1200;1.2立方米=1200立方分米;
780÷1000=0.78;780毫升=0.78立方分米
【点睛】
大单位换算成小单位乘以单位间的进率;小单位换算成大单位要除以单位间的进率。
10.
【分析】
分母是9的真分数有:、、、、、、、;
分子是9的假分数有:、、、、、、、、。
【详解】
分母是9的最大真分数是( ),分子是9的最大假分数是( )。
【点睛】
掌握真假分数的意义是解答题目的关键。
11.60
【分析】
根据题意可知,彩纸的数量是2、3、5的倍数,而且小于80,先求出2、3、5的最小公倍数,2、3、5是互质数,最小公倍数是2×3×5,再看它们最小公倍数的几倍最接近80,即可解答。
【详解】
2×3×5
=6×5
=30
30×2=60
30×3=90
60<80<90
美术课上进行折纸活动,老师拿来一摞不超过80张的彩纸,如果把这些纸平均分给2个、3个、5个同学都能正好分完,没有剩余,这摞彩纸最多有60张。
【点睛】
解答本题先求出2、3、5最小公倍数,再进一步解答。
12.b a
【分析】
根据题意,最小的质数是2,即=2,根据分数与除法的关系,=a÷b=2,由此可知a能被b整除,说明a是b的倍数,求两个数为倍数关系时的最大公因数与最小公倍数:两个数为倍数关系,最大公因数为较小的数,最小公倍数为较大的数,据此解答,
【详解】
由分析可知,=2,a÷b=2,a和b的最大公因数是b,最下公倍数是a。
【点睛】
本题考查两个数为倍数时,最大公因数和最小公倍数的求法。
13.11
【分析】
根据题意,每根短彩带的最大长度是48和40的最大公因数。先用短除法求出48和40的最大公因数即是每根短彩带的最大长度。然后分别求出两根彩带分成的根数,最后把两根彩带分成的根数相加即可。
【详解】
48和40的最大公因数是2×2×2=8。则每根短彩带最长是8厘米。
48÷8+40÷8
=6+5
=11(根)
【点睛】
本题考查最大公因数的应用。理解“每根短彩带的最大长度是48和40的最大公因数”是解题的关键。
14.3
【分析】
如图,从上面看到的和从前面看到的都是,且都用了6个小正方体。
【详解】
用6个小正方体摆一个立体图形,如果从上面看到的和从前面看到的都是,一共有3种不同的摆法。
【点睛】
关键是具有一定的空间想象能力,或者画一画示意图。
15.162
【分析】
由于这个长方体的侧面展开图是一个边长12分米的正方形,所以长方体的高是12分米。又因为这个长方体上下两个面是正方体,所以用12分米除以4可求出长方体的长和宽。据此,结合长方
解析:162
【分析】
由于这个长方体的侧面展开图是一个边长12分米的正方形,所以长方体的高是12分米。又因为这个长方体上下两个面是正方体,所以用12分米除以4可求出长方体的长和宽。据此,结合长方体的体积和表面积公式,列式计算出这个纸箱的体积和表面积。
【详解】
长、宽:12÷4=3(分米)
体积:3×3×12=108(立方分米)
表面积:
3×3×2+3×12×4
=18+144
=162(平方分米)
【点睛】
本题考查了长方体的体积和表面积,灵活运用长方体的表面积和体积公式是解题的关键。
16.4
【分析】
根据找次品的方法, 在用天平找次品时(只含一个次品,已知次品比正品重或轻),所测物品数目与测试的次数有一定的关系:
要辨别的物品数目保证能找出次品需要测的次数2~314~9
解析:4
【分析】
根据找次品的方法, 在用天平找次品时(只含一个次品,已知次品比正品重或轻),所测物品数目与测试的次数有一定的关系:
要辨别的物品数目
保证能找出次品需要测的次数
2~3
1
4~9
2
10~27
3
28~81
4
⋯
⋯
据此关系即可填空。
【详解】
据分析知:所测数目是49个,在28~81范围内,故要4次能保证找出次品。
【点睛】
掌握找次品时所测物品数目与测试的次数之间的关系,这是解决此题的关键。
17.5;;;1.25;0.56;
0.2;2;280;;
【详解】
略
解析:5;;;1.25;0.56;
0.2;2;280;;
【详解】
略
18.;;
;5
【分析】
(1)先通分成同分母分数,再按一般的四则运算顺序计算;
(2)运用加法交换律和加法结合律可带来简便计算;
(3)先去括号,刚好=1,可带来简便计算;
(4)先交换位置,注意交换
解析:;;
;5
【分析】
(1)先通分成同分母分数,再按一般的四则运算顺序计算;
(2)运用加法交换律和加法结合律可带来简便计算;
(3)先去括号,刚好=1,可带来简便计算;
(4)先交换位置,注意交换时的符号,再运用减法性质可带来简便计算。
【详解】
=
=
=
=
=
=
=
=
=
=
=6-1
=5
19.【分析】
等式的性质:等式的左右两边加上或减去同一个数,等式左右两边仍然相等,据此解方程即可。
【详解】
解:
解:x-0.3+0.3=0.25+0.3
x=0.55
解:
解析:
【分析】
等式的性质:等式的左右两边加上或减去同一个数,等式左右两边仍然相等,据此解方程即可。
【详解】
解:
解:x-0.3+0.3=0.25+0.3
x=0.55
解:
20.赵阿姨
【分析】
用过采茶质量÷采茶时间,求出每小时采茶质量,比较即可。
【详解】
8÷3=
16÷7=
>
答:赵阿姨采茶速度快。
【点睛】
分数的分子相当于被除数,分母相当于除数。
解析:赵阿姨
【分析】
用过采茶质量÷采茶时间,求出每小时采茶质量,比较即可。
【详解】
8÷3=
16÷7=
>
答:赵阿姨采茶速度快。
【点睛】
分数的分子相当于被除数,分母相当于除数。
21.8月17日
【分析】
小林每6天游泳一次,小军每8天游泳一次,6和8的最小公倍数就是他们相遇两次之间间隔的时间;从7月24日向后推算这个天数即可。
【详解】
6=2×3,8=2×2×2
6和8的最小
解析:8月17日
【分析】
小林每6天游泳一次,小军每8天游泳一次,6和8的最小公倍数就是他们相遇两次之间间隔的时间;从7月24日向后推算这个天数即可。
【详解】
6=2×3,8=2×2×2
6和8的最小公倍数是:2×2×2×3=24,
所以他们每相隔24天见一次面;
7月24日再过24天是8月17日。
答:8月17日他们又再次相遇。
【点睛】
本题关键是找出他们每两次相遇之间相隔的天数,进而根据开始的天数推算求解。
22.(1);(2)吨
【分析】
(1)根据加法的意义,用+先求出下午用去总数的几分之几,再加上即是一共用去了这车煤的几分之几;
(2)根据分数减法的意义,用总量减去还剩的,即是用去的量。
【详解】
(1
解析:(1);(2)吨
【分析】
(1)根据加法的意义,用+先求出下午用去总数的几分之几,再加上即是一共用去了这车煤的几分之几;
(2)根据分数减法的意义,用总量减去还剩的,即是用去的量。
【详解】
(1)++
=++
=
答:一共用去了这车煤的;
(2)-=(吨)
答:用去了吨。
【点睛】
此题考查的是分数加法的意义和分数减法的意义,分数不带单位表示分率,带单位表示一个具体的量,计算结果要化成最简分数。
23.3种;切法见详解;40平方厘米
【分析】
找出长方体中四条长(或宽或高)的中点,然后依次连接,即可把该长方体切成两个相同小正方体,由此即可知道有3种不同的切法;
由于切一刀增加两个面,即沿平行于最大
解析:3种;切法见详解;40平方厘米
【分析】
找出长方体中四条长(或宽或高)的中点,然后依次连接,即可把该长方体切成两个相同小正方体,由此即可知道有3种不同的切法;
由于切一刀增加两个面,即沿平行于最大的面(5×4)切,此时增加的表面积最多,表面积增加的部分就是多出来的这两个面的面积,即5×4×2,算出结果即可。
【详解】
由分析可知,一共有3种不同的切法;
5×4×2
=20×2
=40(平方厘米)
答:一共有3种不同的切法;表面积最多可以增加40平方厘米。
【点睛】
此题考查了简单立方体的切拼问题,明确把一个长方体切成两个小长方体,增加两个面的面积。
24.(1)324平方米
(2)648立方米
【分析】
根据宽与深的比计算出蓄水池的宽,抹水泥部分的面积等于长方体的4个侧面积之和;利用长方体的体积计算出蓄水池的蓄水量。
【详解】
宽:9÷3×2
=3×
解析:(1)324平方米
(2)648立方米
【分析】
根据宽与深的比计算出蓄水池的宽,抹水泥部分的面积等于长方体的4个侧面积之和;利用长方体的体积计算出蓄水池的蓄水量。
【详解】
宽:9÷3×2
=3×2
=6(米)
(1)(6×9+12×9)×2
=(54+108)×2
=162×2
=324(平方米)
答:抹水泥的面积是324平方米。
(2)12×9×6
=108×6
=648(立方米)
答:这个蓄水池的蓄水量是648立方米。
【点睛】
掌握长方体的表面积和体积计算公式是解答题目的关键。
25.见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,连结即可;
(2)根据平移的特征,把整个图形的各顶点分别向右平移
解析:见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,连结即可;
(2)根据平移的特征,把整个图形的各顶点分别向右平移5格,再依次连结即可。
【详解】
作图如下:
【点睛】
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点,然后依次连结各对称点即可。平移作图要注意:①方向;②距离。整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。
26.960立方厘米
【分析】
正着放和倒着放,底面积相同,高减少了15-4厘米,用减少的体积÷减少的高=长方体底面积,长方体底面积×原来的高=最初水的体积。
【详解】
704÷(15-4)
=704÷1
解析:960立方厘米
【分析】
正着放和倒着放,底面积相同,高减少了15-4厘米,用减少的体积÷减少的高=长方体底面积,长方体底面积×原来的高=最初水的体积。
【详解】
704÷(15-4)
=704÷11
=64(平方厘米)
64×15=960(立方厘米)
答:这个容器最初放了960立方厘米的水
【点睛】
关键是掌握长方体体积公式,长方体体积=底面积×高。
展开阅读全文