资源描述
求极限的方法总结
1. 约去零因子求极限
例1:求极限
【说明】表明无限接近,但,所以这一零因子可以约去。
【解】
习题:
2.分子分母同除求极限
例2:求极限
【说明】型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】
【注】(1) 一般分子分母同除x的最高次方;且一般x是趋于无穷的
习题
3.分子(母)有理化求极限
例1:求极限
【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】
例2:求极限
【解】
【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键
习题:
4. 用函数的连续求极限(当函数连续时,它的函数值就是它的极限值)
【其实很简单的】
5. 利用无穷小与无穷大的关系求极限
例题 【给我最多的感觉,就是:当取极限时,分子不为0而分母为0时 就取倒数!】
6. 有界函数与无穷小的乘积为无穷小
例题 ,
7.用等价无穷小量代换求极限
【说明】
(1)常见等价无穷小有:
当 时,,
;
(2) 等价无穷小量代换,只能代换极限式中的因式;
(3)此方法在各种求极限的方法中应作为首选。
例1:求极限
【解】 .
例2:求极限
【解】
习题
8.应用两个重要极限求极限
两个重要极限是和,第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。
说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,
例如:,,;等等。
例1:求极限
【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑,最后凑指数部分。
【解】
例2
解:原式=
例3
解:原式= 。
例4
解:原式=
习题:(1);(2)已知,求
9.夹逼定理求极限
例题:极限
【说明】两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。
【解】
因为
又
所以=1
习题: 证明下列极限
10. 数列极限中等比等差数列公式应用(等比数列的公比q绝对值要小于1)。()
11. .利用与极限相同求极限
例题: 已知,求
解:易证:数列单调递增,且有界(0<<2),由准则1极限存在,设 。对已知的递推公式 两边求极限,得:
,解得:或(不合题意,舍去)
所以 。
12.换元法 求极值
此后 ,还将学:
13.用导数定义求极限
14.利用洛必达法则求极限
15.利用泰勒公式求极限
16.利用定积分的定义求极限
17.利用级数收敛的必要条件求极限
其中专业理论知识内容包括:保安理论知识、消防业务知识、职业道德、法律常识、保安礼仪、救护知识。作技能训练内容包括:岗位操作指引、勤务技能、消防技能、军事技能。
二.培训的及要求培训目的
安全生产目标责任书
为了进一步落实安全生产责任制,做到“责、权、利”相结合,根据我公司2015年度安全生产目标的内容,现与财务部签订如下安全生产目标:
一、目标值:
1、全年人身死亡事故为零,重伤事故为零,轻伤人数为零。
2、现金安全保管,不发生盗窃事故。
3、每月足额提取安全生产费用,保障安全生产投入资金的到位。
4、安全培训合格率为100%。
二、本单位安全工作上必须做到以下内容:
1、对本单位的安全生产负直接领导责任,必须模范遵守公司的各项安全管理制度,不发布与公司安全管理制度相抵触的指令,严格履行本人的安全职责,确保安全责任制在本单位全面落实,并全力支持安全工作。
2、保证公司各项安全管理制度和管理办法在本单位内全面实施,并自觉接受公司安全部门的监督和管理。
3、在确保安全的前提下组织生产,始终把安全工作放在首位,当“安全与交货期、质量”发生矛盾时,坚持安全第一的原则。
4、参加生产碰头会时,首先汇报本单位的安全生产情况和安全问题落实情况;在安排本单位生产任务时,必须安排安全工作内容,并写入记录。
5、在公司及政府的安全检查中杜绝各类违章现象。
6、组织本部门积极参加安全检查,做到有检查、有整改,记录全。
7、以身作则,不违章指挥、不违章操作。对发现的各类违章现象负有查禁的责任,同时要予以查处。
8、虚心接受员工提出的问题,杜绝不接受或盲目指挥;
9、发生事故,应立即报告主管领导,按照“四不放过”的原则召开事故分析会,提出整改措施和对责任者的处理意见,并填写事故登记表,严禁隐瞒不报或降低对责任者的处罚标准。
10、必须按规定对单位员工进行培训和新员工上岗教育;
11、严格执行公司安全生产十六项禁令,保证本单位所有人员不违章作业。
三、 安全奖惩:
1、对于全年实现安全目标的按照公司生产现场管理规定和工作说明书进行考核奖励;对于未实现安全目标的按照公司规定进行处罚。
2、每月接受主管领导指派人员对安全生产责任状的落
7
展开阅读全文