收藏 分销(赏)

材料力学-梁的挠度.ppt

上传人:天**** 文档编号:1887345 上传时间:2024-05-11 格式:PPT 页数:37 大小:1.48MB
下载 相关 举报
材料力学-梁的挠度.ppt_第1页
第1页 / 共37页
材料力学-梁的挠度.ppt_第2页
第2页 / 共37页
材料力学-梁的挠度.ppt_第3页
第3页 / 共37页
材料力学-梁的挠度.ppt_第4页
第4页 / 共37页
材料力学-梁的挠度.ppt_第5页
第5页 / 共37页
点击查看更多>>
资源描述

1、.71 概述概述72 梁的挠曲线近似微分方程梁的挠曲线近似微分方程73 积分法计算梁的位移积分法计算梁的位移74 叠加法计算梁的叠加法计算梁的位移位移75 梁的刚度校核梁的刚度校核目目 录录.77 概概 述述研究范围研究范围:等直梁在对称弯曲时位移的计算。研究目的研究目的:对梁作刚度校核;解超静定梁(为变形几何条件提供补充方程)。.1.1.挠度挠度:横截面形心沿垂直于轴线方向的线位移。用v表示。与 f 同向为正,反之为负。2.2.转角转角:横截面绕其中性轴转动的角度。用 表示,顺时针转动为正,反之为负。二、挠曲线:变形后,轴线变为光滑曲线,该曲线称为挠曲线。二、挠曲线:变形后,轴线变为光滑曲线

2、,该曲线称为挠曲线。其方程为:其方程为:v=f(x)三、转角与挠曲线的关系:三、转角与挠曲线的关系:一、度量梁变形的两个基本位移量一、度量梁变形的两个基本位移量小变形小变形PxvCq qC1f.7-2 梁的挠曲线近似微分方程梁的挠曲线近似微分方程一、挠曲线近似微分方程一、挠曲线近似微分方程式(2)就是挠曲线近似微分方程。小变形小变形fxM0fxM0(1).对于等截面直梁,挠曲线近似微分方程可写成如下形式:1.1.微分方程的积分微分方程的积分2.2.位移边界条件位移边界条件PABCPD 7-3 积分法计算梁的位移积分法计算梁的位移.讨论:适用于小变形情况下、线弹性材料、细长构件的平面弯曲。可应用

3、于求解承受各种载荷的等截面或变截面梁的位移。积分常数由挠曲线变形的几何相容条件(边界条件、连续条 件)确定。优点:使用范围广,直接求出较精确;缺点:计算较繁。支点位移条件:支点位移条件:连续条件连续条件:光滑条件:光滑条件:.例例1 1 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。建立坐标系并写出弯矩方程写出微分方程并积分应用位移边界条件求积分常数解:解:PLxf.写出弹性曲线方程并画出曲线最大挠度及最大转角xfPL.解:解:建立坐标系并写出弯矩方程写出微分方程并积分xfPLa 例例2 2 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。.应用位移边界条件求积分常数PLaxf.写出弹性

4、曲线方程并画出曲线最大挠度及最大转角PLaxf.例例3 3 试用积分法求图示梁的挠曲线方程和转角方程,并求C截面挠度和A截面转角。设梁的抗弯刚度EI为常数。解解:1 1外力分析外力分析:求支座约束反力。研究梁ABC,受力分析如图,列平衡方程:.2内力分析内力分析:分区段列出梁的弯矩方程:3变形分析变形分析:AB段:由于 积分后得:.BC段:由于 ,积分后得:边界条件:边界条件:当连续光滑条件:连续光滑条件:代入以上积分公式中,解得:.故挠曲线方程和转角方程分别为:由此可知:.7-4 7-4 叠加法计算梁的叠加法计算梁的位移位移一、载荷叠加一、载荷叠加 多个载荷同时作用于结构而引起的变形等于每个

5、载荷单独作用于结构而引起的变形的代数和。二、结构形式叠加(逐段刚化法)二、结构形式叠加(逐段刚化法).例例4 4 按叠加原理求A点转角和C点挠度。解、载荷分解如图 由梁的简单载荷变形表,查简单载荷引起的变形。qqPP=+AAABBB Caa.qqPP=+AAABBB Caa 叠加.例例5 试用叠加法求图示梁C截面挠度和转角。设梁的抗弯刚度EI为常数。(已知AB=BC=l/2)(a)(b)+解解:将原图分解成图(a)和图(b)所示情况。查表,对于图(a)有:.于是有:对于图(b)有:故梁C截面挠度为:转角为:(顺时针)说明:对于图(a):BC段无内力,因而BC段不变形,BC段为直线。.例例6 按

6、叠加原理求C点挠度。解解:载荷无限分解如图由梁的简单载荷变形表,查简单载荷引起的变形。叠加q00.5L0.5LxdxbxfC.例例7 结构形式叠加(逐段刚化法)原理说明。=+PL1L2ABCBCPL2f1f2等价等价xfxffPL1L2ABC刚化刚化AC段段PL1L2ABC刚化刚化BC段段PL1L2ABCMxf.7-5 7-5 梁的刚度校核梁的刚度校核一、梁的刚度条件一、梁的刚度条件 其中称为许用转角;f/L称为许用挠跨比。通常依此条件进行如下三种刚度计算:、校核刚度:校核刚度:、设计截面尺寸设计截面尺寸:、设计载荷:设计载荷:(对于土建工程,强度常处于主要地位,刚度常处于从属地位。特殊构件例

7、外).例例8 图示木梁的右端由钢拉杆支承。已知梁的横截面为边长a=200mm的正方形,均布载荷集度 ,弹性模量E1=10GPa,钢 拉 杆 的 横 截 面 面 积 A=250mm2,弹 性 模 量E2=210GPa,试求拉杆的伸长量及梁跨中点D处沿铅垂方向的位移。解解:静静力力分分析析,求出支座A点的约束反力及拉杆BC所受的力。列平衡方程:.本题既可用积分法,也可用叠加法求图示梁D截面的挠度。积分法:积分法:拉杆BC的伸长为梁AB的弯矩方程为挠曲线的近似微分方程积分得:.边界条件:当 时,;当 时,代入上式得故当 时,。叠加法:叠加法:说明:AB梁不变形,BC杆变形后引起AB梁中点的位移,与B

8、C不变形,AB梁变形后引起AB梁中点的位移叠加。.PL=400mmP2=2kNACa=0.1m200mmDP1=1kNB 例例9 下图为一空心圆截面梁,内外径分别为:d=40mm、D=80mm,梁的E=210GPa,工程规定C点的f/L=0.00001,B点的=0.001弧度,试校核此梁的刚度。=+=P1=1kNABDCP2BCDAP2=2kNBCDAP2BCaP2BCDAM.P2BCa=+图图1 1图图2 2图图3 3解:结构变换,查表求简单载荷变形。PL=400mmP2=2kNACa=0.1m200mmDP1=1kNBP1=1kNABDCP2BCDAMxf.P2BCa=+图图1 1图图2 2图图3 3PL=400mmP2=2kNACa=0.1m200mmDP1=1kNBP1=1kNABDCP2BCDAMxf 叠加求复杂载荷下的变形.校核刚度.一、挠曲线近似微分方程 的近似性反映在哪几方面?二、用积分法求图示组合梁的挠曲线方程时,需应用的支承条件和连续条件是什么?三、长度为L,重量为P的等截面直梁,放置在水平刚性平面上。若在端点施力P/3上提,未提起部分仍保持与平面密合,试求提起部分的长度。第七章第七章 练习题练习题.解解:A点处梁的曲率半径为 ,即.此课件下载可自行编辑修改,供参考!感谢您的支持,我们努力做得更好!

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服