资源描述
人教版八年级数学下册期末试卷达标训练题(Word版含答案)
一、选择题
1.要使二次根式有意义,那么a的取值范围是( )
A. B. C. D.
2.以下列各组数为边长,能构成直角三角形的是( )
A.,,2 B.1,2, C.1,, D.4,5,6
3.四边形中,.要判别四边形是平行四边形,还需满足条件( )
A. B.
C. D.
4.某校评选先进班集体,从“学习”、“卫生”、“纪律”、“德育”四个方面考核打分,各项满分均为100,所占比例如下表:
项目
学习
卫生
纪律
德育
所占比例
30%
25%
25%
20%
九年级5班这四项得分依次为80,86,84,90,则该班四项综合得分为( )A.84.5 B.84
C.82.5 D.81.5
5.如图,已知正方形B的面积为100,如果正方形C的面积为169,那么正方形A的面积为( )
A.269 B.69 C.169 D.25
6.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于( )
A.60° B.65° C.75° D.80°
7.如图1,为矩形的边上一点,点从点出发沿折线运动到点停止,点从点出发沿运动到点停止,它们的运动速度都是厘米/秒.现,两点同时出发,设运动时间为(秒),的面积为(cm2),若与的对应关系如图2所示,则矩形的面积是( )
A.cm2 B.72 cm2 C.84 cm2 D.56 cm2
8.如图,在平面直角坐标系中,O为坐标原点,直线与x轴交于B点,与轴交于A点,点在线段 上,且,若点P在坐标轴上,则满足的点P的个数是( )
A.4 B.3 C.2 D.1
二、填空题
9.若在实数范围内有意义,则实数的取值范围是_______________.
10.若菱形的两条对角线的长分别为6和10,则菱形的面积为__________.
11.在中,,,,则______.
12.在平行四边形ABCD中,AB=5,AD=3,AC⊥BC,则BD的长为____.
13.在平面直角坐标系,,,点M在直线上,M在第一象限,且,则点M的坐标为____.
14.如图,下列条件之一能使平行四边形ABCD是菱形的为_____________.
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
15.如图,在平面直角坐标系中,直线:与轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点、、、…在直线上,点、、、…在轴正半轴上,则点的坐标是__________.
16.已知,如图,在中,是上的中线,如果将沿翻折后,点的对应点,那么的长为__________.
三、解答题
17.计算:
(1)
(2)
18.如图,在O处的某海防哨所发现在它的北偏东60°方向相距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处,发现B在O的南偏东45°的方向上.问:此时快艇航行了多少米(即AB的长)?
19.图(a)、图(b)是三张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1请在图a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合具体要求如下:
(1)画一个面积为10的等腰直角三角形;
(2)画一个面积为12的平行四边形
20.如图1,在中,于点D,,点E为边AD上一点,且,连接BE并延长,交AC于点F.
(1)求证:;
(2)过点A作交BF的延长线于点G,连接CG,如图2.若,求证:四边形ADCG是矩形.
21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a=,求的值.
他是这样分析与解的:∵a==,
∴, ∴
∴, ∴=2(=.
请你根据小明的分析过程,解决如下问题:
(1)若a=,直接写出的值是 .
(2)使用以上方法化简:
22.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为元,乙商场实际付费为元,顾客购买商品金额为元.
(1)分别求出,与的函数关系式;
(2)比较顾客到哪个商场更优惠,并说明理由.
23.如图1,四边形ACBD中,AC=AD,BC=BD.我们把这种两组邻边分别相等的四边形叫做“筝形”,如图2,在“筝形”ACBD中,对角线AB=CD,过点B作BE⊥AC于E点,F为线段BE上一点,连接FA、FD,FA=FB.
(1)求证:△ABF≌△CDA;
(2)如图3,FA、FD分别交CD、AB于点M、N,若AM=MF,求证:BN=CM+MN.
24.如图1,在平面直角坐标系中,直线交轴于点,交轴于点.
(1)求直线的函数表达式;
(2)如图2,在线段上有一点(点不与点、点重合),将沿折叠,使点落在上,记作点,在上方,以为斜边作等腰直角三角形,求点的坐标;
(3)在(2)的条件下,如图3,在平面内是否存在一点,使得以点,,为顶点的三角形与全等(点不与点重合),若存在,请直接写出满足条件的所有点的坐标,若不存在,请说明理由.
25.如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接.
(1)求出直线的解析式;
(2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值.
(3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由.
26.如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:
(1)在图1中,连接,且
①求证:与互相平分;
②求证:;
(2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.
(3)在图3中,当,,时,求之长.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据二次根式有意义的条件:被开方数大于或等于0,可以求出a的范围.
【详解】
解:根据题意得:,
解得:
故选:B.
【点睛】
考查二次根式有意义的条件:被开方数大于或等于0.
2.C
解析:C
【分析】
根据勾股定理的逆定理,判断较小两边的平方和是否等于第三边的平方,则可以判断各个选项的三条线段能否构成直角三角形,本题得以解决.
【详解】
解:A、,故选项中的三条线段不能构成直角三角形;
B、,故选项中的三条线段不能构成直角三角形;
C、,故选项中的三条线段能构成直角三角形;
D、,故选项中的三条线段不能构成直角三角形;
故选:C.
【点睛】
本题考查勾股定理的逆定理,解答本题的关键是明确题意,利用勾股定理的逆定理解答.
3.D
解析:D
【解析】
【分析】
四边形ABCD中,已经具备AD∥BC,再根据选项,选择条件,推出AB∥CD即可.
【详解】
∵AD∥BC,
∴∠A+∠B=180°,
∵,
∴∠B=∠C,
∴这样的四边形是等腰梯形,不是平行四边形,故A选项不符合题意,
∵AD∥BC,
∴∠A+∠B=180°,
∴添加∠A+∠B=180°不能判别四边形是平行四边形,故B选项不符合题意,
∵,,
∴这样的四边形是等腰梯形,不是平行四边形,故C选项不符合题意,
∵AD∥BC,
∴∠A+∠B=180°,
∵,
∴∠A+∠D=180°,
∴AB//CD,
∴四边形是平行四边形,故D选项符合题意,
故选:D.
【点睛】
本题考查平行四边形的判定,熟练掌握平行四边形的判定定理是解题关键.
4.A
解析:A
【解析】
【分析】
根据题意和表格中的数据,可以利用每项分数乘以权重,再求和计算出该班四项综合得分.
【详解】
解:由题意可得,
该班四项综合得分为:
80×30%+86×25%+84×25%+90×20%,
=24+21.5+21+18,
=84.5(分).
故选:A.
【点睛】
本题考查了加权平均数,解答本题的关键是明确加权平均数的含义,会计算一组数据的加权平均数.
5.B
解析:B
【解析】
根据题意知正方形的B面积为100,正方形C的面积为169,
则字母A所代表的正方形的面积=169−100=69.
故选B.
6.C
解析:C
【解析】
【分析】
连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
【详解】
连接BD,
∵四边形ABCD为菱形,∠A=60°,
∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
∵P为AB的中点,
∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
∴∠PDC=90°,
∴由折叠的性质得到∠CDE=∠PDE=45°,
在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
故选C.
【点睛】
此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
7.B
解析:B
【解析】
【分析】
过点E作EH⊥BC,由三角形面积求得EH=AB=6,由图2知,当x=14时,点P与点D重合,则AD=12,从而可得答案.
【详解】
从函数的图象和运动过程知:当点P运动到点E时,x=10,y=30
即BE=BQ=10,
过点E作EH⊥BC于点H,如图
则
解得:EH=6
∵四边形ABHE是矩形
∴AB=EH=6
在Rt△ABE中,由勾股定理得:
由图2知,当x=14时,点P与点D重合
即BE+ED=14
∴ED=14-BE=4
∴AD=AE+ED=8+4=12
∴矩形ABCD的面积为:12×6=72(厘米2)
故选:B.
【点睛】
本题考查了动点问题的函数图象,三角形的面积,勾股定理,矩形的判定与性质等知识,弄懂动点运动过程、数形结合是解答本题的关键.
8.A
解析:A
【分析】
作点关于轴的对称点,根据直线与x轴交于B点,与轴交于A点,求出A,B两点的坐标,然后利用勾股定理求得,即,可判断点P在x轴上,使得的点P的个数是两个;作点关于轴的对称点,同理可判断点P在y轴上,使得的点P的个数是两个,据此求解即可.
【详解】
解:如图示,作点关于轴的对称点,
直线与x轴交于B点,与轴交于A点,
则当时,,即A点坐标是:(0,),
当时,,即B点坐标是:(,0),
∴,
∴,
∵,
∴,,
由勾股定理可得:,,
∴,
∴C点坐标是:(,),D点坐标是:(, ),
则点坐标是:(,),
∴,
∴,
即:,
∴如下图示,
点P在y轴上,使得的点P的个数是两个,
如图示,作点关于轴的对称点,
同理可以求得,
即:,
∴点P在y轴上,使得的点P的个数是两个,
综上所述,点P在坐标轴上,满足的点P的个数是4个,
故选:A.
【点睛】
本题考查了一次函数的应用、轴对称的性质、勾股定理的应用,熟悉相关性质是解题的关键.
二、填空题
9.
【解析】
【分析】
根据二次根式有意义的条件可直接进行求解.
【详解】
解:由题意得:
,
解得:;
故答案为.
【点睛】
本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.
10.30
【解析】
【分析】
因为菱形的对角线互相垂直,互相垂直的四边形的面积等于对角线乘积的一半.
【详解】
解:菱形的面积为:.
故答案为:30.
【点睛】
本题考查菱形的性质,关键知道菱形的对角线互相垂直,然后根据面积等于对角线乘积的一半求出结果.
11.
【解析】
【分析】
根据勾股定理即可求得的长度.
【详解】
在直角中,,
∴根据勾股定理,
∴,
故答案为:.
【点睛】
本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理是解题的关键.
12.A
解析:
【分析】
根据AC⊥BC,AB=5,AD=3,可以得到AC的长,再根据平行四边形的性质,可以得到DE和BE的长,然后根据勾股定理即可求得BD的长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC,
∵AC⊥BC,AB=5,AD=3,
∴∠ACB=90°,BC=3,
∴AC=4,
作DE⊥BC交BC的延长线于点E,
∵AC⊥BC,
∴AC∥DE,
又∵AD∥CE,
∴四边形ACED是矩形,
∴AC=DE,AD=CE,
∴DE=4,BE=6,
∵∠DEB=90°,
∴BD=,
故答案为:.
【点睛】
本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理.
13.
【分析】
过点 作 于点 交直线 于点 ,可求出直线的解析式为 ,然后设点 的坐标为 ,其中 ,则 ,从而得到,最后根据,可得到,解出 ,即可求解.
【详解】
解:如图,过点 作 于点 交直线 于点 ,
设直线的解析式为 ,
把,,代入得:
,解得: ,
∴直线的解析式为 ,
∵点M在直线上,M在第一象限,
设点 的坐标为 ,其中 ,
当 时, ,
∴ ,
∴ ,
∵,
∴ ,
∵,
∴ ,
∴ ,
解得: ,
∴.
故答案为:.
【点睛】
本题主要考查了一次函数图象上点的坐标特征,求一次函数解析式,运用数形结合思想,通过设点的坐标利用三角形的面积构造方程是解题的关键.
14.A
解析:①③.
【分析】
根据菱形的判定定理判定即可.
【详解】
解:①ABCD中,AC⊥BD,根据对角线互相垂直的平行四边形是菱形,即可判定ABCD是菱形,故①正确;
②ABCD中,∠BAD=90°,根据有一个角是直角的平行四边形是矩形,可判定ABCD是矩形,而不能判定ABCD是菱形,故②错误;
③ABCD中,AB=BC,根据一组邻边相等的平行四边形是菱形,即可判定ABCD是菱形,故③正确;
④ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,可判定ABCD是矩形,而不能判定ABCD是菱形,故④错误.
故答案为①③.
【点睛】
本题主要考查了菱形的判定定理. ①一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.
15.(22020,22021-1)
【分析】
根据一次函数图象上点的坐标特征结合正方形的性质,可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐
解析:(22020,22021-1)
【分析】
根据一次函数图象上点的坐标特征结合正方形的性质,可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标变化可找出变化规律:“Bn(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.
【详解】
解:当y=0时,有x-1=0,
解得:x=1,
∴点A1的坐标为(1,0).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1).
同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,
∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,
∴Bn(2n-1,2n-1)(n为正整数),
∴点B2021的坐标是(22020,22021-1).
故答案为:(22020,22021-1).
【点睛】
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键.
16..
【分析】
先用勾股定理求得BC,利用斜边上的中线性质,求得CD,BD的长,再利用折叠的性质,引进未知数,用勾股定理列出两个等式,联立方程组求解即可.
【详解】
如图所示,
∵,
∴BC==8,
解析:.
【分析】
先用勾股定理求得BC,利用斜边上的中线性质,求得CD,BD的长,再利用折叠的性质,引进未知数,用勾股定理列出两个等式,联立方程组求解即可.
【详解】
如图所示,
∵,
∴BC==8,
∵CD是上的中线,
∴CD=BD=AD=5,
设DE=x,BE=y,
根据题意,得
,
,
解得x=,y=,
∴,
故答案为:.
【点睛】
本题考查了勾股定理,斜边上中线的性质,方程组的解法,折叠的性质,熟练掌握折叠的性质,正确构造方程组计算是解题的关键.
三、解答题
17.(1);(2)0
【分析】
(1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可;
(2)利用二次根式的四则运算法则求解即可.
【详解】
(1)原式,
,
;
(2)原式,
,
.
解析:(1);(2)0
【分析】
(1)先化简二次根式和去绝对值,然后利用二次根式的混合运算法则求解即可;
(2)利用二次根式的四则运算法则求解即可.
【详解】
(1)原式,
,
;
(2)原式,
,
.
【点睛】
本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握相关运算法则进行求解.
18.快艇航行了(500+500)米.
【分析】
先根据题意得到∠AOE=60°,∠BOF=45°,从而得到∠AOC=30°,∠BOC=45°,再利用含30度角的直角三角形的性质和勾股定理求解即可.
【详
解析:快艇航行了(500+500)米.
【分析】
先根据题意得到∠AOE=60°,∠BOF=45°,从而得到∠AOC=30°,∠BOC=45°,再利用含30度角的直角三角形的性质和勾股定理求解即可.
【详解】
解:如图:在直角△AOC中,∠AOC=30°,OA=1000米,
∴AC=OA=500米,
∴米,
∵∠FOB=45°,
∴∠COB=45°,
∴OC=BC=米
∴AB=500+(米).
答:快艇航行了(500+)米.
【点睛】
本题主要考查了勾股定理,方位角,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.
19.(1)见解析;(2)见解析
【解析】
【分析】
(1)根据等腰直角三角形的性质求出边长分别为、、,再网格中找到相应的格点,作图即可;
(2)根据平行四边形的面积为12,确定底边长为4、高为3,在网格
解析:(1)见解析;(2)见解析
【解析】
【分析】
(1)根据等腰直角三角形的性质求出边长分别为、、,再网格中找到相应的格点,作图即可;
(2)根据平行四边形的面积为12,确定底边长为4、高为3,在网格中找到相应的格点,作图即可.
【详解】
解:(1)根据等腰直角三角形的面积为为10,设两个直角边为,则
解得,由勾股定理得,斜边长为
,
在网格中找到到相应的格点使得两条直角边为,连线即可,其中是以2,4为直角边的直角三角形的斜边,如图(a)
(2)根据平行四边形的面积为12,可以作底边长为4、高为3的平行四边形,在图中选取相应的格点,使得平行四边形的边长为为4、高为3,如图(b)
【点睛】
此题考查了等腰直角三角形的性质,勾股定理,平行四边形的性质,熟练掌握相关基本性质是解题的关键.
20.(1)见解析;(2)见解析
【分析】
(1)先证,得,又因为,可证;
(2)先证,得,又因为,利用边与边的关系,得,又因为,可证得四边形ADCG是平行四边形,又因为,四边形ADCG是矩形.
【详解】
解析:(1)见解析;(2)见解析
【分析】
(1)先证,得,又因为,可证;
(2)先证,得,又因为,利用边与边的关系,得,又因为,可证得四边形ADCG是平行四边形,又因为,四边形ADCG是矩形.
【详解】
(1)证明:∵,
∴.
∵,,
∴.
∴.
∵,
∴.
(2)证明:∵,
∴,
由(1)知,
∴,
∵,
∴,
∴,
∴,
∵,,
∴,
∴,
∵,
∴四边形ADCG是平行四边形,
∵,
∴四边形ADCG是矩形.
【点睛】
本题考查了相似三角形的判定与性质,全等的判定和性质、平行四边形、矩形的判定,能利用相似和全等找到边与边的关系是解题的关键.
21.(1)5;(2)5.
【解析】
【详解】
试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.
试题解析:(1)∵a=,
∴4a2-8a+1
=4×()2-8×()+1
=5;
(2)
解析:(1)5;(2)5.
【解析】
【详解】
试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.
试题解析:(1)∵a=,
∴4a2-8a+1
=4×()2-8×()+1
=5;
(2)原式=×(−1+−+−+…+−)
=×(-1)
=×10
=5.
点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键.
22.(1),;(2)当时,选择甲、乙两个商场均可,当时,选择乙商场更优惠,当时,选择甲商场更优惠.
【分析】
(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:
解析:(1),;(2)当时,选择甲、乙两个商场均可,当时,选择乙商场更优惠,当时,选择甲商场更优惠.
【分析】
(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;
(2)根据(1)中解析式的费用分类讨论即可.
【详解】
(1)由题意得,,
即 ,
,
即
(2)当时,
由得:
,
解得:,
由得:
,
解得:,
由得:
,
解得:.
∴当时,选择甲、乙两个商场均可,当时,选择乙商场更优惠,当时,选择甲商场更优惠.
【点睛】
本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x之间的函数关系式是本题的关键.
23.(1)证明见解析;(2)证明见解析
【分析】
(1)根据已知条件可得△ABC≌△ABD,再根据∠AOC+∠AOD=180°,进而可证得AB⊥CD,进而得到∠ACO=∠ABE,进而证得△ABF≌△CD
解析:(1)证明见解析;(2)证明见解析
【分析】
(1)根据已知条件可得△ABC≌△ABD,再根据∠AOC+∠AOD=180°,进而可证得AB⊥CD,进而得到∠ACO=∠ABE,进而证得△ABF≌△CDA;
(2)取AB中点H,根据已知条件可知MO为△AFH的中位线,进而可证得△AFH≌△DAO,进一步得到△AFD为等腰直角三角形,然后过点F作FI⊥AF交AB于点I,取CD上点G使MG=MN,连接AG,先证△AFI≌△DAM,而后△FMN≌△FIN,得到∠FIN =∠FMN,进而可证△AMG≌△FMN,得到∠AGM=∠FNM,进而证得△ACG≌△FBN,得到BN=CG,再根据CG=CM+MG,得到BN=CM+MG,又MG=MN,继而得到BN=CM+MN.
【详解】
证明:(1)∵AC=AD,BC=BD,AB=AB,
∴△ABC≌△ABD,
∴∠CAO=∠DAO,
又∵∠ACO=∠ADO,
∴∠AOC=∠AOD,
又∵∠AOC+∠AOD=180°,
∴∠AOC=∠AOD=90°,
∴AB⊥CD,
在Rt△AOC中,∠ACO+∠CAO=90°,
在Rt△AEB中,∠ABE+∠CAO=90°,
∴∠ACO=∠ABE,
又∵AC=AD,FA=FB,
∴∠ACO=∠ADO=∠ABF=∠FAB,
∵,
∴△ABF≌△CDA;
(2)如图,取AB中点H,
∵△ABF是等腰三角形,
∴FH⊥AB,
∵AM=MF且MO⊥AB,
∴MO为△AFH的中位线,
∴AO=OH=,
又∵AH===DO,
由△ABF≌△CDA,可知:AF=BF=AC=AD,
∴△AFH≌△DAO,
∴∠AFH=∠DAO,
∵∠FAH+∠AFH=90°,
∴∠FAH+∠DAO=90°,
∴∠FAD=90°,
∴△AFD为等腰直角三角形,
过点F作FI⊥AF交AB于点I,取CD上点G使MG=MN,连接AG,
由△AFH≌△DAO可得∠FAI=∠ADM,
又∵AD=AF,
∴△AFI≌△DAM,
∴FI=AM,
又∵AM=MF,
∴FI=MF,
由FI⊥AF可知∠AFI=90°,∠AFN=45°,
∴∠NFI=∠AFI-∠AFN=90°-45°=45°,
∴∠MFN=∠NFI,又∵FI=FM,
∴△FMN≌△FIN,
∴∠FIN =∠FMN,
又∵∠AMD=∠FIA,
∴∠AMD=∠FMN,
又∵AM=FM,MG=MN,
∴△AMG≌△FMN,
∴∠AGM=∠FNM,
又∵∠FNM=∠FNB,
∴∠AGM=∠FNB,
又∵∠ACG=∠FBN,AC=FB,
∴△ACG≌△FBN,
∴BN=CG,
又∵CG=CM++MG,
∴BN=CM+MG,
又∵MG=MN,
∴BN=CM+MN.
【点睛】
本题考查全等三角形的判定与性质、等腰三角形的性质、中位线等知识,解题的关键是综合运用相关知识解题.
24.(1);(2),;(3),或,或,.
【解析】
【分析】
(1)直接利用待定系数法,即可得出结论;
(2)先求出,,进而求出点的坐标,再构造出,得出,,设,进而建立方程组求解,即可得出结论;
(3)
解析:(1);(2),;(3),或,或,.
【解析】
【分析】
(1)直接利用待定系数法,即可得出结论;
(2)先求出,,进而求出点的坐标,再构造出,得出,,设,进而建立方程组求解,即可得出结论;
(3)分两种情况,①当时,利用中点坐标公式求解,即可得出结论;
②当时,当点在上方时,判断出四边形是平行四边形,即可得出结论;
当点在下方时,判断出四边形是平行四边形,再用平移的性质,即可得出结论.
【详解】
解:(1)设直线的函数表达式为,
点,点,
,
,
直线的函数表达式为;
(2)如图1,
点,点,
,,
,
由折叠知,,
过点作轴,交轴于,
,
,
,,
,
,,
过点作轴于,延长交于,
,
,
是等腰直角三角形,
,,
,
,
,
,,
设,则,
,
,;
(3)设,则,
由折叠知,,,
在中,,
,
,
,,,,
点,,为顶点的三角形与全等,
①当时,
,,
连接交于,则,,由(1)知,,,
设,
,,
,,
,;
②当时,当点在上方时,
,,
四边形是平行四边形,
,
,;
当点在下方时,,,
四边形是平行四边形,
点,向左平移个单位,再向下平移个单位到达点,
点是点向左平移个单位,再向下平移个单位到达点,,即满足条件的点的坐标为,或,或,.
【点睛】
本题考查了一次函数综合题,考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,中点坐标公式,解题的关键是构造出全等三角.
25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.
【分析】
(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2
解析:(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.
【分析】
(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.
(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.
(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.
【详解】
(1)如图1中,作BH⊥x轴于H.
∵A(1,0)、C(0,2),
∴OA=1,OC=2,
∵∠COA=∠CAB=∠AHB=90°,
∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,
∴∠ACO=∠BAH,
∵AC=AB,
∴△COA≌△AHB(AAS),
∴BH=OA=1,AH=OC=2,
∴OH=3,
∴B(3,1),
设直线BC的解析式为y=kx+b,则有,
解得:,
∴;
(2)如图2中,
∵四边形ABMN是平行四边形,
∴AN∥BM,
∴直线AN的解析式为:,
∴,
∴,
∵B(3,1),C(0,2),
∴BC=,
∴,
∴,
∴t=s时,四边形ABMN是平行四边形;
(3)如图3中,
如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,
连接OQ交BC于E,
∵OE⊥BC,
∴直线OE的解析式为y=3x,
由,解得:,
∴E(,),
∵OE=OQ,
∴Q(,),
∵OQ1∥BC,
∴直线OQ1的解析式为y=-x,
∵OQ1=OB=,设Q1(m,-),
∴m2+m2=10,
∴m=±3,
可得Q1(3,-1),Q3(-3,1),
当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,
易知线段OB的垂直平分线的解析式为y=-3x+5,
由,解得:,
∴Q2(,).
综上所述,满足条件的点Q坐标为:或或或.
【点睛】
本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
26.(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)
【分析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形
解析:(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)
【分析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;
(2)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;
(3)过P作PE⊥PD,过B作BELPE于E,根据(2)的结论求出PE,结合图形解答.
【详解】
(1)证明:①连接ED、BF,
∵BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
∴BD、EF互相平分;
②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.
∵EF⊥BE,
∴∠BEF=90°.
在Rt△BEO中,BE2+OE2=OB2.
∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.
在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.
∴(BE+DF)2+EF2=2AB2;
(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,
理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.
∵BE∥DF,EF⊥BE,
∴EF⊥DF,
∴四边形EFDM是矩形,
∴EM=DF,DM=EF,∠BMD=90°,
在Rt△BDM中,BM2+DM2=BD2,
∴(BE+EM)2+DM2=BD2.
即(BE+DF)2+EF2=2AB2;
(3)解:过P作PE⊥PD,过B作BE⊥PE于E,
则由上述结论知,(BE+PD)2+PE2=2AB2.
∵∠DPB=135°,
∴∠BPE=45°,
∴∠PBE=45°,
∴BE=PE.
∴△PBE是等腰直角三角形,
∴BP=BE,
∵BP+2PD=4 ,
∴2BE+2PD=4,即BE+PD=2,
∵AB=4,
∴(2)2+PE2=2×42,
解得,PE=2,
∴BE=2,
∴PD=2﹣2.
【点睛】
本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.
展开阅读全文