资源描述
人教版部编版八年级下册数学期末试卷易错题(Word版含答案)
一、选择题
1.要使二次根式有意义的条件是( )
A. B. C. D.
2.下列条件:①;②;③;④,能判定是直角三角形的有( )
A.4个 B.3个 C.2个 D.1个
3.下列能判定一个四边形是平行四边形的是( )
A.对角线相等,且一组对角相等的四边形是平行四边形
B.一对邻角的和为180°的四边形是平行四边形
C.两条对角线相互垂直的四边形是平行四边形
D.一组对边平行且相等的四边形是平行四边形
4.一组数据:的平均数为,众数为,中位数为,则以下判断正确的是( )
A.一定出现在中 B.一定出现在中
C.一定出现在中 D.,,都不会出现在中
5.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )
A. B. C. D.2
6.如图所示,在菱形ABCD中,AC,BD相交于O,∠ABC=50°,E是线段AO上一点则∠BEC的度数可能是( )
A.95° B.75° C.55° D.35°
7.如图,在正方形ABCD的外侧作等边,对角线AC与BD相交于点O,连接AE交BD于点F,若,则AB的长度为( )
A.2 B. C. D.3
8.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=5,则AD的长是( )
A.5 B.5 C.5 D.10
二、填空题
9.已知是实数,且满足,则的平方根是____________.
10.已知菱形的边长为4,∠A=60°,则菱形的面积为_________.
11.已知一个直角三角形的两直角边长分别是1和3,则斜边长为________.
12.如图,在矩形ABCD中,AD=10,AB=6,点E为BC上的点,ED平分∠AEC,则EC=___.
13.已知直线经过点,那么_________.
14.如图所示,在四边形ABCD中,顺次连接四边中点E、F、G、H,构成一个新的四边形,请你对四边形ABCD添加一个条件,使四边形EFGH成一个菱形,这个条件是__________.
15.甲从地出发以某一速度向地走去,同时乙从地出发以另一速度向地而行,如图中的线段、分别表示甲、乙离地的距离()与所用时间的关系.则、两地之间的距离为______,甲、乙两人相距时出发的时间为______.
16.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC A沿CE翻折,使点A落在AB上的点D处;再将边 BC沿CF翻折,使点B落在CD的延长线上的点B'处,两条折痕与斜边AB分别交于点 E、F,则△B'FC 的面积为______________.
三、解答题
17.计算
(1)
(2)
(3)
(4)
18.一架云梯长25m,如图所示斜靠在一而墙上,梯子底端C离墙7m.
(1)这个梯子的顶端A距地面有多高?
(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向滑动了多少米?
19.如图是一个的正方形网格,已知每个小正方形的边长均为1,每个小正方形的顶点称为格点,请按要求解答下列问题:
(1)如图,满足线段的格点共有______个;
(2)试在图中画出一个格点,使其为等腰三角形,,且的内部只包含4个格点(不包含在边上的格点).
20.如图,矩形ABCD的对角线AC与BD交于点,作CF∥BD,DF∥AC.求证:四边形DECF为菱形.
21.我们规定,若a+b=2,则称a与b是关于1的平衡数.
(1)若3与是关于1的平衡数,5-与是关于1的平衡数,求,的值;
(2)若(m+)×(1-)=-2n+3(-1),判断m+与5n-是否是关于1的平衡数,并说明理由.
22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.
(1)求不打折的门票价格;
(2)求y1、y2与x之间的函数关系式;
(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)
23.已知:如图,平行四边形ABCD中,AB=5,BD=8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CE=CF,AE=AF.
(1)求证:四边形ABCD是菱形;
(2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域;
(3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP的底边长为 .(请将答案直接填写在空格内)
24.【模型建立】
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.
求证:△CDA≌△BEC.
【模型运用】
(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.
【模型迁移】
如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.
25.在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足.
(1)求m,n的值;
(2)①如图1,P,Q分别为OM,MN上一点,若∠PCQ=45°,求证:PQ=OP+NQ;
②如图2,S,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D.若∠SDG=135°,,则RS=______;
(3)如图3,在矩形OABC中,OA=5,OC=3,点F在边BC上且OF=OA,连接AF,动点P在线段OF是(动点P与O,F不重合),动点Q在线段OA的延长线上,且AQ=FP,连接PQ交AF于点N,作PM⊥AF于M.试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由.
26.如图,△ABC中,BA=BC,CO⊥AB于点O,AO=4,BO=6.
(1)求BC,AC的长;
(2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连结OE.
①当点D在线段OB上时,若△AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长.
②设DE交直线BC于点F,连结OF,CD,若S△OBF:S△OCF=1:4,则CD的长为 (直接写出结果).
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据二次根式有意义的条件,即根号下为非负数,判断即可.
【详解】
解:∵有意义,
∴,
解得:,
故选:D.
【点睛】
本题主要考查二次根式有意义的条件,明确根号下为非负数是解题的关键.
2.C
解析:C
【分析】
根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.
【详解】
解:①即,△ABC是直角三角形,故①符合题意;
②∵∠A+∠B+∠C=180°,∠C=∠A−∠B,
∴∠A+∠B+∠A−∠B=180°,即∠A=90°,
∴△ABC是直角三角形,故②符合题意;
③∵,
设a=,b=,c=,
则,
∴△ABC不是直角三角形,故③不合题意;
④∵,
∴∠C=×180°=75°,故不是直角三角形;故④不合题意.
综上,符合题意的有①②,共2个,
故选:C.
【点睛】
本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
3.D
解析:D
【解析】
【分析】
分别利用平行四边形的判定方法结合梯形的判定方法分析得出答案.
【详解】
解:A、对角线相等,且一组对角相等的四边形无法确定是平行四边形,故此选项不合题意;
B、一对邻角的和为180°的四边形是平行四边形,错误,有可能是梯形,故此选项不合题意;
C、两条对角线相互垂直的四边形无法确定是平行四边形,故此选项不合题意;
D、一组对边平行且相等的四边形是平行四边形,正确,符合题意.
故选D.
【点睛】
本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件.
4.B
解析:B
【解析】
【分析】
根据平均数、中位数、众数的定义,对于错误的说法举出反例说明,从而利于排除法求解.
【详解】
解:A、如数据0,1,1,4这四个数的平均数是1.5,不是这组数中的某个数,错误,不符合题意;
B、众数是一组数据中出现次数最多的数,它一定是数据中的数,正确,符合题意;
C、如数据1,2,3,4的中位数是2.5,不是这组数中的某个数,错误,不符合题意;
D、众数是一组数据中出现次数最多的数,它一定是数据中的数,错误,不符合题意.
故选:B.
【点睛】
本题主要考查了平均数、中位数、众数的定义.平均数等于数据之和除以总个数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
5.B
解析:B
【分析】
连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC=,CF=3,则∠ACF=90°,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长.
【详解】
连接AC、CF,如图,
∵四边形ABCD和四边形CEFG都是正方形,
∴∠ACD=45°,FCG=45°,AC=BC=,CF=CE=3,
∴∠ACF=45°+45°=90°,
在Rt△ACF中,AF=,
∵H是AF的中点,
∴CH=AF= .
故选B.
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.
6.B
解析:B
【解析】
【分析】
由菱形的性质,得∠AOB=90°,∠ABO=,从而得:∠BAO=65°,进而可得:65°<<90°,即可得到答案.
【详解】
解:∵在菱形中,
∴,即:∠AOB=90°,
∴<90°,
∵,
∴∠ABO=,
∴∠BAO=65°,
∵=∠BAO+∠ABE,
∴>55°,
即:55°<<90°.
故选B.
【点睛】
本题主要考查菱形的性质定理以及三角形内角和定理与外角的性质,掌握菱形的性质是解题的关键.
7.B
解析:B
【解析】
【分析】
先根据正方形和等边三角形的性质证明△ADE是等腰三角形,求出∠DAE=∠DEA,再求出∠OAF=30°,在直角三角形OAF中即可得出结论.
【详解】
解:∵四边形ABCD是正方形,△CDE是等边三角形,
∴AD=CD,∠ADC=90°,DC=DE,∠CDE=∠DEC=60°,∠DAC=45°,AC⊥BD,
∴AD=DE,∠ADE=90°+60°=150°,∠AOD=90°,
∴∠DAE=∠DEA=(180°−150°)=15°,∠OAF=45°−15°=30°,
∴AF=2OF=2,
∴OA= ==,
∴AB=OA=,
故选:B.
【点睛】
本题考查了正方形的性质和等边三角形的性质、含30°角的直角三角形的性质以及等腰三角形的判定方法;根据正方形和等边三角形的性质弄清各个角之间的关系是解决问题的关键.
8.A
解析:A
【分析】
根据矩形的性质可得△AOB是等边三角形,可得BD的长度,再根据勾股定理求解即可.
【详解】
解:因为在矩形ABCD中,AO=AC=BD=BO,
又因为∠AOB=60°,所以△AOB是等边三角形,所以AO=AB=5,
所以BD=2AO=10,
所以AD2=BD2﹣AB2=102﹣52=75,
所以AD=5.
故选:A.
【点睛】
本题考查了矩的性质、等边三角形的判定和性质以及勾股定理等知识,属于基本题型,熟练掌握上述知识是解题的关键.
二、填空题
9.
【解析】
【分析】
根据二次根式有意义的条件可求得x,然后求得y,最后求平方根即可.
【详解】
解:∵是实数,且满足,
∴并且,
解得,此时,
∴,其平方根是.
故答案为:.
【点睛】
本题考查二次根式有意义的条件,求一个数的平方根,二次根式的化简,理解二次根式有意义被开方数非负是解题关键.
10.A
解析:8
【解析】
【分析】
作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解.
【详解】
如图所示,菱形ABCD中,AB=AD=4,∠A=60°,
过点D作DE⊥AB于点E,
则,
∴菱形ABCD的面积为AB∙DE=4×= ,
故答案为:.
【点睛】
本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键.
11.
【解析】
【分析】
利用勾股定理计算即可.
【详解】
解:∵直角三角形的两直角边长分别是1和3,
∴斜边==,
故答案为:.
【点睛】
本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
12.A
解析:2
【分析】
根据平行线的性质以及角平分线的定义证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,进而得出EC.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠ADE,
又∵∠DEC=∠AED,
∴∠ADE=∠AED,
∴AE=AD=10,
在直角△ABE中,BE=.
∴EC=BC-BE=10-8=2,
故答案为:2.
【点睛】
本题考查了矩形的性质,勾股定理,等腰三角形的判定,解决本题的关键是灵活运用矩形的性质,等腰三角形的判定和勾股定理.
13.-4
【分析】
将点代入直线的表达式中求解即可.
【详解】
解:∵直线经过点,
∴0=4+b,
解得:b=﹣4,
故答案为:﹣4.
【点睛】
本题考查待定系数法求一次函数的解析式,熟练掌握待定系数法求函数解析式的方法是解答的关键.
14.A
解析:答案不唯一,例AC=BD 等
【分析】
连接AC、BD,先证明四边形ABCD是平行四边形,再根据菱形的特点添加条件即可.
【详解】
连接AC,
∵点E、F分别是AB、BC的中点,
∴EF是△ABC的中位线,
∴EF∥AC,EF=AC,
同理HG∥AC,HG=AC,
∴EF∥HG,EF=HG,
∴四边形EFGH是平行四边形,
连接BD,同理EH=FG,EF∥FG,
当AC=BD时,四边形EFGH是平行四边形,
故答案为:答案不唯一,例AC=BD 等.
【点睛】
此题考查三角形中位线性质,平行四边形的判定及性质,菱形的判定.
15.2或3
【分析】
①利用路程的函数图象解得的解析式,再求的值;
②根据题意列方程解答即可.
【详解】
解:①设=kx+b,
∵经过点P(2.5,7.5),(4,0).
∴ ,
解得 ,
∴=
解析:2或3
【分析】
①利用路程的函数图象解得的解析式,再求的值;
②根据题意列方程解答即可.
【详解】
解:①设=kx+b,
∵经过点P(2.5,7.5),(4,0).
∴ ,
解得 ,
∴=−5x+20,当x=0时,=20.
答:AB两地之间的距离为20km.
②根据题意得:或,
解得:或.
即出发2小时或3小时,甲、乙两人相距
【点睛】
此题主要考查了根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.熟练掌握相遇问题的解答也很关键.
16.【分析】
由题意可得AB=10,根据面积可得CE=4.8,根据勾股定理可求BE=6.4,由折叠可求∠ECF=45°,可得EC=EF=4.8,即可求BF的长,可求面积.
【详解】
解:∵Rt△ABC
解析:
【分析】
由题意可得AB=10,根据面积可得CE=4.8,根据勾股定理可求BE=6.4,由折叠可求∠ECF=45°,可得EC=EF=4.8,即可求BF的长,可求面积.
【详解】
解:∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴BA= =10,
∵将边AC沿CE翻折,使点A落在AB上的点D处,
∴∠AEC=∠CED,∠ACE=∠DCE,
∵∠AED=180°,
∴∠CED=90°,即CE⊥AB,
∵S△ABC= AB×EC=AC×BC,
∴EC=4.8,
在Rt△BCE中,BE==6.4,
∵将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,
∴BF=B'F,∠BCF=∠B'CF,
∵∠BCF+∠B'CF+∠ACE+∠DCE=∠ACB=90°,
∴ECF=45°,
又CE⊥AB,
∴∠EFC=∠ECF=45°,
∴CE=EF=4.8,
∵BF=BE-EF=6.4-4.8=1.6,
∴△BFC的面积为:FB×EC=,
由翻折可知,△B'FC 的面积=△BFC的面积=
故答案为.
【点睛】
本题考查了折叠问题,勾股定理,根据折叠的性质求∠ECF=45°是本题的关键.
三、解答题
17.(1)1;(2);(3)0;(4).
【分析】
(1)先运用分母有理化化简,然后再计算即可;
(2)先运用二次根式的性质化简,然后再计算即可;
(3)先运用平方差公式计算,然后再化简即可;
(4)先
解析:(1)1;(2);(3)0;(4).
【分析】
(1)先运用分母有理化化简,然后再计算即可;
(2)先运用二次根式的性质化简,然后再计算即可;
(3)先运用平方差公式计算,然后再化简即可;
(4)先运用零次幂、二次根式的性质、完全平方公式化简,然后再计算即可.
【详解】
解:(1)
=
=
=4-3
=1;
(2)
=
=;
(3)
=5-7+2
=0;
(4)
=
=
=.
【点睛】
本题主要考查了二次根式的运算,掌握分母有理化、二次根式的性质成为解答本题的关键.
18.(1)这个梯子的顶端距地面有高;(2)梯子的底部在水平方向滑动了.
【分析】
(1)根据勾股定理即可求解;
(2)先求出BD,再根据勾股定理即可求解.
【详解】
解:(1)由题意可知:,;,
在中,
解析:(1)这个梯子的顶端距地面有高;(2)梯子的底部在水平方向滑动了.
【分析】
(1)根据勾股定理即可求解;
(2)先求出BD,再根据勾股定理即可求解.
【详解】
解:(1)由题意可知:,;,
在中,由勾股定理得:
,
∴
,
因此,这个梯子的顶端距地面有高.
(2)由图可知:AD=4m,
,
在中,由勾股定理得:
,
∴
,
∴.
答:梯子的底部在水平方向滑动了.
【点睛】
此题主要考查勾股定理的实际应用,解题的关键是根据题意在直角三角形中,利用勾股定理进行求解.
19.(1)3;(2)见解析.
【解析】
【分析】
(1)先根据勾股定理算出AB的两条直角边,再结合画图即可解答;
(2)根据题意画出图形即可.
【详解】
解:(1)∵10=12+32
∴如图:
∴满足
解析:(1)3;(2)见解析.
【解析】
【分析】
(1)先根据勾股定理算出AB的两条直角边,再结合画图即可解答;
(2)根据题意画出图形即可.
【详解】
解:(1)∵10=12+32
∴如图:
∴满足线段的格点共有3个
故填3;
(2)画图如下(答案不唯一):
【点睛】
本题主要考查了勾股定理和等腰三角形的定义,掌握勾股定理成为解答本题的关键.
20.见解析
【分析】
根据DF∥AC,CF∥BD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=BD=AC=EC,即可证出四边形EDFC是菱形.
【详解】
证明:∵DF∥AC
解析:见解析
【分析】
根据DF∥AC,CF∥BD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=BD=AC=EC,即可证出四边形EDFC是菱形.
【详解】
证明:∵DF∥AC,CF∥BD
∴四边形EDFC是平行四边形,
∵四边形ABCD是矩形,
∴ED=BD=AC=EC,
∴四边形EDFC是菱形.
【点睛】
本题主要考查矩形性质和菱形的判定的知识点,解答本题的关键是熟练掌握菱形的判定定理,此题比较简单.
21.(1) -1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析
【解析】
【分析】
(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;
(2)对式子进行化简,得到的关系,再对
解析:(1) -1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析
【解析】
【分析】
(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;
(2)对式子进行化简,得到的关系,再对进行分情况讨论求解即可.
【详解】
解:(1)根据题意可得:,
解得,
故答案为,
(2),
∴ ,
∴ ,
∴
①当均为有理数时,
则有 ,
解得:,
当时,
所以不是关于1的平衡数
②当中一个为有理数,另一个为无理数时,
,而此时为无理数,故,
所以不是关于1的平衡数
③当均为无理数时,当时,联立,解得
,
存在,使得是关于1的平衡数,
当且时,不是关于1的平衡数
综上可得:当,时,是关于1的平衡数,否则不是关于1的平衡数.
【点睛】
本题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,并掌握分类讨论的思想.
22.(1)80元/人;(2)y1=48x,y2=;(3)A旅游团30人,B旅游团20人
【分析】
(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;
(2
解析:(1)80元/人;(2)y1=48x,y2=;(3)A旅游团30人,B旅游团20人
【分析】
(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;
(2)利用待定系数法求正比例函数解析式求出,分与,利用待定系数法求与的函数关系式即可;
(3)设团有人,表示出团的人数为,然后分与两种情况,根据(2)的函数关系式列出方程求解即可.
【详解】
解:(1)(元人),
答:不打折的门票价格是80元人;
(2)设,
解得:,
,
当时,设,
当时,设,
则,
解得:,,
,
;
(3)设旅游团人,则旅游团人,
若,则,
解得:,与不相符,
若,则,
解得:,与相符,(人,
答:旅游团30人,旅游团20人.
【点睛】
本题考查了一次函数的应用,利用了待定系数法求一次函数解析式,准确识图获取必要的信息是解题的关键,(3)要注意分情况讨论.
23.(1)见解析;(2);(3)8或或6
【分析】
(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;
(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的
解析:(1)见解析;(2);(3)8或或6
【分析】
(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;
(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式;
(3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长.
【详解】
解:(1)证明:如图1,连结,
,,,
,
,
即;
四边形是平行四边形,
,
,
,
,
四边形是菱形
(2)如图2,连结,交于点,作于点,则,
由(1)得,四边形是菱形,
,
,
,,
,
,
,
由,且,得,
解得;
,
,
由,且,得,
点在边上且不与点、重合,
,
关于的函数解析式为,
(3)如图3,,且点在的延长线上,
,,
,
,
,
,
,
,
,
,
,
,
,
,,
,
,
即等腰三角形的底边长为8;
如图4,,作于点,于点,则,
,
,
,
,
,
由(2)得,,
,
,
即等腰三角形的底边长为;
如图5,,点与点重合,连结,
,,,
,
,
即,
等腰三角形的底边长为6.
综上所述,以为腰的等腰三角形的底边长为8或或6,
故答案为:8或或6.
【点睛】
此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解.
24.(1)见解析;(2);(3)点P坐标为(4,0)或(﹣4,0)
【解析】
【分析】
(1)由“AAS”可证△CDA≌△BEC;
(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为
解析:(1)见解析;(2);(3)点P坐标为(4,0)或(﹣4,0)
【解析】
【分析】
(1)由“AAS”可证△CDA≌△BEC;
(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E,由(1)可知△BOA≌△AED,可得DE=OA=3,AE=OB=4,可求点D坐标,由待定系数法可求解析式;
(3)分两种情况讨论,通过证明△OAP≌△CPB,可得OP=BC=4,即可求点P坐标.
【详解】
(1)证明:∵AD⊥DE,BE⊥DE,
∴∠D=∠E=90°,
∴∠BCE+∠CBE=90°,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
∴∠ACD=∠CBE,
又CA=BC,∠D=∠E=90°
∴△CDA≌△BEC(AAS)
(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E
∵直线y=x+4与坐标轴交于点A、B,
∴A(﹣3,0),B(0,4),
∴OA=3,OB=4,
由(1)得△BOA≌△AED,
∴DE=OA=3,AE=OB=4,
∴OE=7,
∴D(﹣7,3)
设l2的解析式为y=kx+b,
得
解得
∴直线l2的函数表达式为:
(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,
∵BE=2,∠BCO=30°,BE⊥OC
∴BC=4,
∵将线段AP绕点P顺时针旋转30°得到BP,
∴AP=BP,∠APB=30°,
∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,
∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,
∴△OAP≌△CPB(AAS)
∴OP=BC=4,
∴点P(4,0)
若点P在x轴负半轴,如图4,过点B作BE⊥OC,
∵BE=2,∠BCO=30°,BE⊥OC
∴BC=4,
∵将线段AP绕点P顺时针旋转30°得到BP,
∴AP=BP,∠APB=30°,
∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,
∴∠APE=∠PBC,
∵∠AOE=∠BCO=30°,
∴∠AOP=∠BCP=150°,且∠APE=∠PBC,PA=PB
∴△OAP≌△CPB(AAS)
∴OP=BC=4,
∴点P(﹣4,0)
综上所述:点P坐标为(4,0)或(﹣4,0)
【点睛】
本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键.
25.(1)m=5,n=5;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.
【分析】
(1)利用非负数的性质即可解决问题.
(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ
解析:(1)m=5,n=5;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.
【分析】
(1)利用非负数的性质即可解决问题.
(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PE=PQ=OE+OP,得出结论;
②作辅助线,构建平行四边形和全等三角形,可得▱CSRE和▱CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,所以SR= ;
(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.
【详解】
解:(1)∵ ,
又∵≥0,|5﹣m|≥0,
∴n﹣5=0,5﹣m=0,
∴m=5,n=5.
(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,
∵CN=OM=OC=MN,∠COM=90°,
∴四边形OMNC是正方形,
∴CO=CN,
∵∠EOC=∠N=90°,
∴△COE≌△CNQ(SAS),
∴CQ=CE,∠ECO=∠QCN,
∵∠PCQ=45°,
∴∠QCN+∠OCP=90°﹣45°=45°,
∴∠ECP=∠ECO+∠OCP=45°,
∴∠ECP=∠PCQ,
∵CP=CP,
∴△ECP≌△QCP(SAS),
∴EP=PQ,
∵EP=EO+OP=NQ+OP,
∴PQ=OP+NQ.
②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,
过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=,
∵∠SDG=135°,
∴∠SDH=180°﹣135°=45°,
∴∠FCE=∠SDH=45°,
∴∠NCE+∠OCF=45°,
∵△CEN≌△CE′O,
∴∠E′CO=∠ECN,CE=CE′,
∴∠E′CF=∠E′CO+∠OCF=45°,
∴∠E′CF=∠FCE,
∵CF=CF,
∴△E′CF≌△ECF(SAS),
∴E′F=EF
在Rt△COF中,OC=5,FC=,
由勾股定理得:OF= =,
∴FM=5﹣=,
设EN=x,则EM=5﹣x,FE=E′F=x+,
则(x+)2=()2+(5﹣x)2,
解得:x=,
∴EN=,
由勾股定理得:CE= =,
∴SR=CE=.
故答案为.
(3)当P、Q在移动过程中线段MN的长度不会发生变化.
理由:如图3中,过P作PD∥OQ,交AF于D.
∵OF=OA,
∴∠OFA=∠OAF=∠PDF,
∴PF=PD,
∵PF=AQ,
∴PD=AQ,
∵PM⊥AF,
∴DM=FD,
∵PD∥OQ,
∴∠DPN=∠PQA,
∵∠PND=∠QNA,
∴△PND≌△QNA(AAS),
∴DN=AN,
∴DN=AD,
∴MN=DM+DN=DF+AD=AF,
∵OF=OA=5,OC=3,
∴CF=,
∴BF=BC﹣CF=5﹣4=1,
∴AF=,
∴MN=AF=,
∴当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.
【点睛】
本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,灵活运用所学知识是解答本题的关键.
26.(1)4;(2)或8.
【分析】
根据BA=BC,分别用勾股定理求出CO和AC的长.
①分情况AO=OE和AO=AE,画出图形,根据三角形中位线定理和证明三角形全等解决问题.
②分情况
i)当D在线
解析:(1)4;(2)或8.
【分析】
根据BA=BC,分别用勾股定理求出CO和AC的长.
①分情况AO=OE和AO=AE,画出图形,根据三角形中位线定理和证明三角形全等解决问题.
②分情况
i)当D在线段OB上时,如图3,过B作BG⊥EF于G,根据同高三角形面积比等于底边之比,得到,再根据平行线性质∠BDG=∠BFG,得到BD=BF=,最后使用勾股定理求出结论
ii)当D在线段OB的延长线上时,如图4,过B作BG⊥DE于G,同理计算可得结论.
【详解】
解:(1)∵AO=4,BO=6,
∴AB=10,
∵BA=BC,
∴BC=10,
∵CO⊥AB,
∴∠AOC=∠BOC=90°,
由勾股定理得:CO===8,
AC===4;
(2)①分两种情况:
i)如图1,当AO=OE=4时,过O作ON⊥AC于N,
∴AN=EN,
∵DE⊥AC,
∴ON∥DE,
∴AO=OD=4;
ii)当AO=AE=4时,如图2,
在△CAO和△DAE中,
,
∴△CAO≌△DAE(AAS),
∴AD=AC=4,
∴OD=4﹣4;
②分两种情况:
i)当D在线段OB上时,如图3,过B作BG⊥EF于G,
∵S△OBF:S△OCF=1:4,
∴
∴
∵CB=10
∴BF=
∵EF⊥AC,
∴BG∥AC,
∴∠GBF=∠ACB,
∵AE∥BG,
∴∠A=∠DBG,
∵AB=BC,
∴∠A=∠ACB,
∴∠DBG=∠GBF,
∵∠DGB=∠FGB,
∴∠BDG=∠BFG,
∴BD=BF=,
∴OD=OB﹣BD=6﹣=,
∴CD===;
ii)当D在线段OB的延长线上时,如图4,过B作BG⊥DE于G,
同理得,
∵BC=10,
∴BF=2,
同理得:∠BFG=∠BDF,
∴BD=BF=2,
Rt△COD中,CD===8,
综上,CD的长为或8.
故答案为:或8.
【点睛】
本题考查的是三角形全等的综合题,关键是根据三角形全等判定和性质、平行线性质、等腰三角形性质,三角形面积、勾股定理等,知识解答有难度.
展开阅读全文