1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1如下图,以某点为位似中心,将AOB进行位似变换得到CDE,记AOB与CDE对应边的比为k,则位似中心的坐标和k的值分别为( )ABCD2如图,函数,的图像与平行于轴的直线分别相交于两点,且点在点的右侧,点在轴上,且的面积为1,则( )ABCD3两相似三角形的相似比为,它们的面积之差为15,则面积之
2、和是( )A39B75C76D404如图,在中,是的直径,点是上一点,点是弧的中点,弦于点,过点的切线交的延长线于点,连接,分别交于点,连接给出下列结论:;点是的外心;其中正确的是( )ABCD5在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )Ak1Bk0Ck1Dk16如图,在中,则的长为()A6B7C8D97已知圆心O到直线l的距离为d,O的半径r=6,若d是方程x2x6=0的一个根,则直线l与圆O的位置关系为( )A相切B相交C相离D不能确定8若双曲线的图象的一支位于第三象限,则k的取值范围是()Ak1Bk1C0k1Dk19如图,在中,则AC的长为( )A5B
3、8C12D1310已知一个几何体如图所示,则该几何体的主视图是()ABCD11二次函数yx1+bxt的对称轴为x1若关于x的一元二次方程x1+bxt0在1x3的范围内有实数解,则t的取值范围是()A4t5B4t3Ct4D3t512若关于x的一元二次方程的两根是,则的值为( )ABCD二、填空题(每题4分,共24分)13若,那么ABC的形状是_14已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为_.15如图,在等腰中,点是以为直径的圆与的交点,若,则图中阴影部分的面积为_16点是二次函数图像上一点,则的值为_17一个三角形的三边之比为,与它相似的三角形的周长为,则与它相似的
4、三角形的最长边为_.18把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_粒三、解答题(共78分)19(8分)如图,抛物线yx2+bx+c与x轴交于A、B两点,与y轴交于C点,OA2,OC6,连接AC和BC(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE求BCE面积的最大值及此时点E的坐标;20(8分)如图,直线yx+1与x轴,y轴分别交于A,B两点,抛物线yax2+bx+c过点B,并且顶点D的坐标为(2,1)(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一
5、个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ2MN,直接写出点M的坐标21(8分)如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE(1)求证:DE是O的切线;(2)若AE=6,D=30,求图中阴影部分的面积22(10分)如图,直线y=kx+b(b0)与抛物线y=x2相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,于y轴相交于点C,设OCD的面积为S,且kS+8=0.(1)求b的
6、值.(2)求证:点(y1,y2)在反比例函数y=的图像上.23(10分)如图,在中,点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动,当点不与点、重合时,过点作于点,连接,以、为邻边作设与重叠部分图形的面积为,点的运动时间为(1)的长为_;的长用含的代数式表示为_;(2)当为矩形时,求的值;(3)当与重叠部分图形为四边形时,求与之间的函数关系式24(10分)已知二次函数(是常数).(1)当时,求二次函数的最小值;(2)当,函数值时,以之对应的自变量的值只有一个,求的值;(3)当,自变量时,函数有最小值为-10,求此时二次函数的表
7、达式25(12分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为 度,并将条形统计图补充完整(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率26抛物线与轴交于两点(点在点的左侧),且,与轴交于点,点的坐标为(0,-2),连接,以为边,点为对称中心作菱形.点是轴上的一个动点,设
8、点的坐标为,过点作轴的垂线交抛物线与点,交于点(1)求抛物线的解析式;(2)轴上是否存在一点,使三角形为等腰三角形,若存在,请直接写出点的坐标;若不存在,请说明理由;(3)当点在线段上运动时,试探究为何值时,四边形是平行四边形?请说明理由参考答案一、选择题(每题4分,共48分)1、C【解析】两对对应点的连线的交点即为位似中心,连接OD、AC,交点为(2,2,)即位似中心为(2,2,);k=OA:CD=6:3=2,故选C2、A【解析】根据ABC的面积=AByA,先设A、B两点坐标(其y坐标相同),然后计算相应线段长度,用面积公式即可求解【详解】设A(,m),B(,m),则:ABC的面积=,则ab
9、=1故选:A【点睛】本题考查了反比例函数的性质、反比例函数系数k的几何意义、反比例函数图象上点的坐标特征,根据函数的特征设A、B两点的坐标是解题的关键3、A【分析】由两相似三角形的相似比为,得它们的面积比为4:9,设它们的面积分别为4x,9x,列方程,即可求解.【详解】两相似三角形的相似比为,它们的面积比为4:9,设它们的面积分别为4x,9x,则9x-4x=15,x=3,9x+4x=13x=133=39.故选A.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的面积比等于相似比的平方,是解题的关键.4、B【分析】由于与不一定相等,根据圆周角定理可判断;连接OD,利用切线的性质,可得出GPD
10、=GDP,利用等角对等边可得出GP=GD,可判断;先由垂径定理得到A为的中点,再由C为的中点,得到,根据等弧所对的圆周角相等可得出CAP=ACP,利用等角对等边可得出AP=CP,又AB为直径得到ACQ为直角,由等角的余角相等可得出PCQ=PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可判断;正确证明APFABD,可得APAD=AFAB,证明ACFABC,可得AC2=AFAB,证明CAQCBA,可得AC2=CQCB,由此即可判断;【详解】解:错误,假设,则,显然不可能,故错误正确连接是切线,故正确正确,是直径,点是的外心故正确正确连接,可得,可得,故正确
11、,故选:【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题5、A【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k10,解可得k的取值范围【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k10,解得k1故选A【点评】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大6、C【分析】根
12、据平行线分线段成比例定理,由DEBC得,然后利用比例性质求EC和AE的值即可【详解】,即,故选C【点睛】此题考查平行线分线段成比例,解题关键在于求出AE7、B【分析】先解方程求得d,根据圆心到直线的距离d与圆的半径r之间的关系即可解题【详解】解方程:x2x6=0,即:,解得,或(不合题意,舍去),当时,则直线与圆的位置关系是相交;故选:B【点睛】本题考查了直线与圆的位置关系,只要比较圆心到直线的距离和半径的大小关系没有交点,则;一个交点,则;两个交点,则8、B【分析】根据反比例函数的性质解答即可【详解】双曲线的图象的一支位于第三象限,k10,k1故选B【点睛】本题考查了反比例函数的图象与性质,
13、反比例函数y(k0),当k0时,图象在第一、三象限,且在每一个象限y随x的增大而减小;当k0时,函数图象在第二、四象限,且在每一个象限y随x的增大而增大,熟练掌握反比例函数的性质是解答本题的关键9、A【分析】利用余弦的定义可知,代入数据即可求出AC.【详解】故选A.【点睛】本题考查根据余弦值求线段长度,熟练掌握余弦的定义是解题的关键.10、A【分析】主视图是从物体正面看,所得到的图形【详解】该几何体的主视图是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体正面看到的图,掌握定义是关键.11、A【解析】根据抛物线对称轴公式可先求出b的值,一元二次方程x1+bxt0在1x3的范围内有实数解
14、相当于yx1bx与直线yt的在1x3的范围内有交点,即直线yt应介于过yx1bx在1x3的范围内的最大值与最小值的直线之间,由此可确定t的取值范围.【详解】解:抛物线的对称轴x1,b4,则方程x1+bxt0,即x14xt0的解相当于yx14x与直线yt的交点的横坐标,方程x1+bxt0在1x3的范围内有实数解,当x1时,y1+45,当x3时,y9113,又yx14x(x1)14,当4t5时,在1x3的范围内有解t的取值范围是4t5,故选:A【点睛】本题主要考查了二次函数与一元二次方程之间的关系,一元二次方程的解相当于 与直线y=k的交点的横坐标,解的数量就是交点的个数,熟练将二者关系进行转化是
15、解题的关键.12、A【分析】利用一元二次方程的根与系数的关系即可求解.【详解】由题意可得:则故选:A.【点睛】本题考查了一元二次方程的根与系数的关系,对于一般形式,设其两个实数根分别为,则方程的根与系数的关系为:.二、填空题(每题4分,共24分)13、等边三角形【分析】由非负性和特殊角的三角函数值,求出A和B的度数,然后进行判断,即可得到答案【详解】解:,A=60,B=60,C=60,ABC是等边三角形;故答案为:等边三角形【点睛】本题考查了特殊角的三角函数值,非负性的应用,解题的关键是熟练掌握非负数的性质,正确得到A和B的度数14、-10【解析】根据根与系数的关系得出-2+4=-m,-24=
16、n,求出即可【详解】关于x的一元二次方程的两个实数根分别为x =-2,x =4,2+4=m,24=n,解得:m=2,n=8,m+n=10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键15、【分析】取AB的中点O,连接OD,根据圆周角定理得出,根据阴影部分的面积扇形BOD的面积进行求解【详解】取AB的中点O,连接OD,在等腰中,阴影部分的面积扇形BOD的面积,故答案为:【点睛】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键16、1【分析】把点代入即可求得值,将变形,代入即可【详解】解:点是二次函数图像上,则故答案为:1【点睛】本题考查了
17、二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键17、18cm【分析】由一个三角形的三边之比为3:6:4,可得与它相似的三角形的三边之比为3:6:4,又由与它相似的三角形的周长为39cm,即可求得答案【详解】解:一个三角形的三边之比为3:6:4,与它相似的三角形的三边之比为3:6:4,与它相似的三角形的周长为39cm,与它相似的三角形的最长边为:39=18(cm)故答案为:18cm【点睛】此题考查了相似三角形的性质此题比较简单,注意相似三角形的对应边成比例18、1【分析】先根据取出100粒豆子,其中有红豆5粒,确定取出红豆的概率为5%,然后用1005%求出豆子总数,最后再减去红豆子
18、数即可【详解】解:由题意得:取出100粒豆子,红豆的概率为5%,则豆子总数为1005%=2000粒,所以该袋中黑豆约有2000-100=1粒故答案为1【点睛】本题考查了用频率估计概率,弄清题意、学会用样本估计总体的方法是解答本题的关键三、解答题(共78分)19、(1)yx2x6;(2)点D的坐标为(,5);(3)BCE的面积有最大值,点E坐标为(,)【分析】(1)先求出点A,C的坐标,再将其代入yx2+bx+c即可;(2)先确定BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时ACD的周长取最小值,求出直线BC的解析式,再求出其与对称轴的交点即可;(
19、3)如图2,连接OE,设点E(a,a2a6),由式子SBCESOCE+SOBESOBC即可求出BCE的面积S与a的函数关系式,由二次函数的图象及性质可求出BCE的面积最大值,并可写出此时点E坐标【详解】解:(1)OA2,OC6,A(2,0),C(0,6),将A(2,0),C(0,6)代入yx2+bx+c,得,解得,b1,c6,抛物线的解析式为:yx2x6;(2)在yx2x6中,对称轴为直线x,点A与点B关于对称轴x对称,如图1,可设BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时ACD的周长取最小值,在yx2x6中,当y0时,x12,x23,点B的
20、坐标为(3,0),设直线BC的解析式为ykx6,将点B(3,0)代入,得,k2,直线BC的解析式为y2x6,当x时,y5,点D的坐标为(,5);(3)如图2,连接OE,设点E(a,a2a6),SBCESOCE+SOBESOBC6a+3(a2+a+6)36a2+a(a)2+,根据二次函数的图象及性质可知,当a时,BCE的面积有最大值,当a=时,此时点E坐标为(,)【点睛】本题考查的是二次函数的综合,难度适中,第三问解题关键是找出面积与a的关系式,再利用二次函数的图像与性质求最值.20、(1)yx2+2x+1;(2)5;(3)M(,)或(,)【分析】(1)先求出点B坐标,再将点D,B代入抛物线的顶
21、点式即可;(2)如图1,过点C作CHy轴于点H,先求出点F的坐标,点C的坐标,再求出直线CM的解析式,最后可求出两个交点及交点间的距离;(3)设M(m,m+1),如图2,取PQ的中点N,连接MN,证点P,M,Q同在以PQ为直径的圆上,所以PMQ90,利用勾股定理即可求出点M的坐标【详解】解:(1)在yx+1中,当x0时,y1,B(0,1),抛物线yax2+bx+c过点B,并且顶点D的坐标为(2,1),可设抛物线解析式为ya(x+2)21,将点B(0,1)代入,得,a,抛物线的解析式为:y(x+2)21x2+2x+1;(2)联立,解得,或,F(5,),点C是BF的中点,xC,yC,C(,),如图
22、1,过点C作CHy轴于点H,则HCB+CBH90,又MCH+HCB90,CBHMCH,又CHBMHC90,CHBMHC,即,解得,HM5,OMOH+MH+5,M(0,),设直线CM的解析式为ykx+,将C(,)代入,得,k2,yCM2x+,联立2x+x2+2x+1,解得,x1,x2,P(,5+),Q(,5+),PQ5;(3)点M在直线AB上,设M(m,m+1),如图2,取PQ的中点N,连接MN,PQ2MN,NMNPNQ,点P,M,Q同在以PQ为直径的圆上,PMQ90,MP2+MQ2PQ2,+ (5)2,解得,m1,m2,M(,)或(,)【点睛】本题考查了待定系数法求解析式,两点间的距离,勾股定
23、理等,解题关键是需要有较强的计算能力21、(1)证明见解析;(2)阴影部分的面积为【分析】(1)连接OC,先证明OAC=OCA,进而得到OCAE,于是得到OCCD,进而证明DE是O的切线;(2)分别求出OCD的面积和扇形OBC的面积,利用S阴影=SCODS扇形OBC即可得到答案【详解】解:(1)连接OC, OA=OC, OAC=OCA, AC平分BAE, OAC=CAE,OCA=CAE, OCAE, OCD=E, AEDE, E=90, OCD=90, OCCD,点C在圆O上,OC为圆O的半径, CD是圆O的切线;(2)在RtAED中, D=30,AE=6, AD=2AE=12, 在RtOCD
24、中,D=30,DO=2OC=DB+OB=DB+OC, DB=OB=OC=AD=4,DO=8,CD=SOCD=8, D=30,OCD=90,DOC=60, S扇形OBC=OC2=, S阴影=SCODS扇形OBC S阴影=8,阴影部分的面积为822、(1)b=4(b0) ;(2)见解析【分析】(1)根据直线解析式求OC和OD长,依据面积公式代入即可得;(2)联立方程,根据根与系数的关系即可证明.【详解】(1)D(0,b),C(-,0) 由题意得OD=b,OC= - S= k()+8=0 b=4(b0) (2) 点(y1,y2)在反比例函数y=的图像上.【点睛】本题考查二次函数的性质及图象与直线的关
25、系,联立方程组并求解是解答两图象交点问题的重要途径,理解图象与方程的关系是解答此题的关键.23、(1)3;3t;(2);(3)当0t时,S=-3t2+48t;当t3,S=t214t+1【分析】(1)根据勾股定理即可直接计算AB的长;根据三角函数即可计算出PN;(2)当PQMN为矩形时,由PNAB可知PQAB,根据平行线分线段成比例定理可得,即可计算出t的值(3)当PQMN与ABC重叠部分图形为四边形时,有两种情况,PQMN在三角形内部时,PQMN有部分在外边时由三角函数可计算各图形中的高从而计算面积【详解】解:(1)在RtABC中,C=90,AC=20,BC=2AB=3sinCAB,由题可知A
26、P=5t,PN=APsinCAB=5t=3t故答案为:3;3t(2)当PQMN为矩形时,NPQ=90,PNAB,PQAB,由题意可知AP=CQ=5t,CP=20-5t,解得t=,即当PQMN为矩形时t=(3)当PQMNABC重叠部分图形为四边形时,有两种情况,如解图(3)1所示PQMN在三角形内部时延长QM交AB于G点,由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=2-5t,PN=QM=3tAN=APcosA=4t,BG=BQcosB=9-3t,QG=BQsinB=12-4t,PQMN在三角形内部时有0QMQG,03t12-4t,0tNG=3-4t-(9-3t)=16-t
27、当0t时,PQMN与ABC重叠部分图形为PQMN,S与t之间的函数关系式为S=PNNG=3t(16-t)=-3t2+48t如解图(3)2所示当0QGQM,PQMN与ABC重叠部分图形为梯形PQGN时,即:012-4t3t,解得:t3,PQMN与ABC重叠部分图形为梯形PQGN的面积S=NG(PN+QG)= (16t)(3t+124t)= t214t+1综上所述:当0t时,S=-3t2+48t当t3,S=t214t+1【点睛】本题考查了平行四边形的性质、勾股定理、矩形的性质、锐角三角函数等知识,关键是根据题意画出图形,分情况进行讨论,避免出现漏解24、 (1)当x=2时,;(2) b=3;(3)
28、或【分析】(1)将代入并化简,从而求出二次函数的最小值;(2)根据自变量的值只有一个,得出根的判别式 ,从而求出的值;(3)当,对称轴为x=b,分b1、三种情况进行讨论,从而得出二次函数的表达式【详解】(1)当b=2,c=5时, 当x=2时, (2) 当c=3,函数值时, 对应的自变量的值只有一个, , b=3 (3) 当c=3b时, 抛物线对称轴为:x=b b1时,在自变量x的值满足1x5的情况下,y随x的增大而增大, 当x=1时,y最小. b=11 ,当x=b时, y最小. , (舍去) 时,在自变量x的值满足1x5的情况下,y随x的增大而减小,当x=5时, y最小. , b=5(舍去)综
29、上可得: b=11或b=5二次函数的表达式:或【点睛】本题考查了二次函数的性质和应用,掌握根的判别式、二次函数的性质和解二次函数的方法是解题的关键25、(1)72,图详见解析;(2)【分析】(1)先画出条形统计图,再求出圆心角即可;(2)先画出树状图,再求出概率即可【详解】(1)条形统计图为;扇形统计图中“优秀”所对应的扇形的圆心角是(115%25%40%)36072,故答案为:72;(2)画树状图:由树状图可知:所有等可能的结果有6种,其中符合条件的有2种,所有P(甲、丙),即选中的两名同学恰好是甲、丙的概率是【点睛】本题考查了树状图、条形统计图和扇形统计图等知识点,能画出条形图和树状图是解
30、此题的关键26、(1)y=x2-x-2;(2)P的坐标为(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)m=1时.【分析】(1)根据题意,可设抛物线表达式为,再将点C坐标代入即可;(2)设点P的坐标为(m,0),表达出PB2、PC2、BC2,再进行分类讨论即可;(3)根据“当MQ=DC时,四边形CQMD为平行四边形”,用m的代数式表达出MQ=DC求解即可 .【详解】解:(1)抛物线与x轴交于A(-1,0),B(4,0)两点,故可设抛物线的表达式为:,将C(0,-2)代入得:-4a=-2,解得:a=抛物线的解析式为:y=x2-x-2(2)设点P的坐标为(m,0),则PB2=(m-4
31、)2,PC2=m2+4,BC2=20,当PB=PC时,(m-4)2= m2+4,解得:m=当PB=BC时,同理可得:m=42当PC=BC时,同理可得:m=4(舍去4),故点P的坐标为(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)C(0,-2)由菱形的对称性可知,点D的坐标为(0,2),设直线BD的解析式为y=kx+2,又B(4,0)解得k=-1,直线BD的解析式为y=-x+2;则点M的坐标为(m,-m+2),点Q的坐标为(m,m2-m-2)当MQ=DC时,四边形CQMD为平行四边形-m+2-(m2-m-2)=2-(-2)解得m=0(舍去)m=1故当m=1时,四边形CQMD为平行四边形.【点睛】本题考查了二次函数与几何的综合应用,难度适中,解题的关键是灵活应用二次函数的性质与三角形、四边形的判定及性质.