资源描述
2022年人教版七7年级下册数学期末复习题(及答案)
一、选择题
1.25的算数平方根是
A. B.±5 C. D.5
2.下列哪些图形是通过平移可以得到的( )
A. B.
C. D.
3.若点在轴上,则点所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )
A.②③ B.②④ C.③④ D.②③④
5.如图,直线,,则的度数为( )
A. B. C. D.
6.小雪在作业本上做了四道题目:①=﹣3;②±=4;③=9;④=-6,她做对了的题目有( )
A.1道 B.2道 C.3道 D.4道
7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( )
A.45° B.125°
C.55° D.35°
8.如图,动点 P在平面直角坐标系中按图中箭头所示方向运动,第 1 次从原点运 动到点(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2),…, 按这样的运动规律,经过第 2021 次运动后,动点 P的坐标是( )
A.(2020,1) B.(2020,2) C.(2021,1) D.(2021,2)
九、填空题
9.如果,的平方根是,则__________.
十、填空题
10.若与点关于轴对称,则的值是___________;
十一、填空题
11.在△ABC中,若∠A=60°,点O是∠ABC和∠ACB角平分线的交点,则∠BOC=________.
十二、填空题
12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°.
十三、填空题
13.将一条长方形纸带按如图方式折叠,若,则的度数为________°.
十四、填空题
14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为__________.
十五、填空题
15.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“美丽点”,若某个“美丽点”P到y轴的距离为2,则点P的坐标为___.
十六、填空题
16.如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是________.
十七、解答题
17.计算:
(1) (2)
十八、解答题
18.求下列各式中的x值:
(1)25x2-64=0
(2)x3-3=
十九、解答题
19.根据下列证明过程填空:已知:如图,于点,于点,.求证:.
证明:∵,(已知)
∴(______________)
∴(_____________)
∴(_____________)
又∵(已知)
∴(_________)
∴(_________)
∴(__________)
二十、解答题
20.如图,在平面直角坐标系中,的顶点都在格点上,点.
(1)写出点,的坐标;
(2)求的面积.
二十一、解答题
21.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出的近似值,得出1.4<<1.5.利用“逐步逼近“法,请回答下列问题:
(1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= .
(2)x是+2的小数部分,y是﹣1的整数部分,求x= ,y= .
(3)(﹣x)y的平方根.
二十二、解答题
22.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
二十三、解答题
23.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点.
(1)当时,的度数是_______;
(2)当,求的度数(用的代数式表示);
(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.
(4)当点运动到使时,请直接写出的度数.
二十四、解答题
24.如图1,,在、内有一条折线.
(1)求证:;
(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;
(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系.
二十五、解答题
25.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.
(1)若点E的位置如图1所示.
①若∠ABE=60°,∠CDE=80°,则∠F= °;
②探究∠F与∠BED的数量关系并证明你的结论;
(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .
(3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 .
【参考答案】
一、选择题
1.D
解析:D
【分析】
一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.
【详解】
,
∴25的算术平方根是:5.
故答案为5.
【点睛】
本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.
2.B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
解析:B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
故选:B.
【点睛】
本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键.
3.D
【分析】
根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限.
【详解】
在轴上,
,
,
在第四象限,
故选D.
【点睛】
本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解.
4.D
【分析】
根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.
【详解】
对顶角相等,所以①正确,不符合题意;
过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;
相等的角不一定为对顶角,所以③不正确,符合题意;
两直线平行,同位角相等,所以④不正确,符合题意,
故选:D.
【点睛】
本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.
5.B
【分析】
记∠1顶点为A,∠2顶点为B,∠3顶点为C,过点B作BD∥l1,由平行线的性质可得∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.
【详解】
如图,过点B作BD∥l1,
∵,
∴BD∥l1∥l2,
∴∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,
∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,
又∵∠2+∠3=216°,
∴216°+(180°-∠1)=360°,
∴∠1=36°.
故选:B.
【点睛】
本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键.
6.A
【分析】
依据立方根、平方根算术平方根的定义求解即可
【详解】
①=-3,故①正确;②±=±4,故②错误;
=3,故③错误;④=6,故④错误.
故选:A.
【点睛】
此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键
7.C
【分析】
根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案.
【详解】
解:∵∠ACB=90°,∠2=35°,
∴∠3=180°-90°-35°=55°,
∵a∥b,
∴∠1=∠3=55°.
故选:C.
【点睛】
本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中.
8.C
【分析】
分析点P的运动规律找到循环规律即可.
【详解】
解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,
因为2021=505×4+1,
所以,前505次循环运动点P
解析:C
【分析】
分析点P的运动规律找到循环规律即可.
【详解】
解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,
因为2021=505×4+1,
所以,前505次循环运动点P共向右运动505×4=2020个单位,剩余一次运动向右走1个单位,且纵坐标为1.
故点P坐标为(2021,1),
故选:C.
【点睛】
本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.
九、填空题
9.-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
解析:-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
十、填空题
10.1
【分析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.
【详解】
由点与点的坐标关于y轴对称,得:
,,
解得:,,
∴.
故答案为:.
【点睛】
本题
解析:1
【分析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.
【详解】
由点与点的坐标关于y轴对称,得:
,,
解得:,,
∴.
故答案为:.
【点睛】
本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
十一、填空题
11.120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=
解析:120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.
【详解】
∵∠A=60°,
∴∠ABC+∠ACB=120°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=∠ABC+∠ACB=60°,
∴∠BOC=180°-∠OBC-∠OCB=120°
故答案为120°
【点睛】
本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理
十二、填空题
12.40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠D
解析:40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠DAE+∠CAB=180°-∠DAC=90°
∴∠1+∠2=90°
∴∠2=90°-∠1=40°
故答案为:40.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.
十三、填空题
13.36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
解析:36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
故答案为:36
【点睛】
本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质.
十四、填空题
14.,
【分析】
根据算术平方根的定义以及数轴的定义解答即可.
【详解】
解:∵正方形的面积为5,
∴圆的半径为,
∴点A表示的数为,点B表示的数为.
故答案为:,.
【点睛】
本题考查了实数与数轴,熟
解析:,
【分析】
根据算术平方根的定义以及数轴的定义解答即可.
【详解】
解:∵正方形的面积为5,
∴圆的半径为,
∴点A表示的数为,点B表示的数为.
故答案为:,.
【点睛】
本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.
十五、填空题
15.(2,2),(-2,)
【分析】
直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案.
【详解】
解:∵某个“美丽点”到y轴的距离为2,
∴x=±2,
∵x+y=xy,
∴当
解析:(2,2),(-2,)
【分析】
直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案.
【详解】
解:∵某个“美丽点”到y轴的距离为2,
∴x=±2,
∵x+y=xy,
∴当x=2时,
则y+2=2y,
解得:y=2,
∴点P的坐标为(2,2),
当x=-2时,
则y-2=-2y,
解得:y=,
∴点P的坐标为(-2,),
综上所述:点P的坐标为(2,2)或(-2,).
故答案为:(2,2)或(-2,).
【点睛】
此题主要考查了点的坐标,正确分类讨论是解题关键.
十六、填空题
16.【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.
【详解】
解:根据动点在平面直角坐标系中按图中箭头所示方向运动
解析:
【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.
【详解】
解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,
第2次接着运动到点,第3次接着运动到点,
第4次运动到点,第5次接着运动到点,,
横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042,
纵坐标为2,0,1,0,每4次一轮,
经过第2021次运动后,,
故动点的纵坐标为2,
经过第2021次运动后,动点的坐标是.
故答案为:.
【点睛】
此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.
十七、解答题
17.(1)1.2;(2)
【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,
解析:(1)1.2;(2)
【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案.
试题解析:(1)原式
(2)原式
十八、解答题
18.(1)x=±;(2)x=.
【解析】
【分析】
(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;
(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可
解析:(1)x=±;(2)x=.
【解析】
【分析】
(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;
(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得.
【详解】
解:(1)∵25x2-64=0,
∴25x2=64,
则x2=,
∴x=±;
(2)∵x3-3=,
∴x3=,
则x=.
故答案为:(1)x=;(2)x=.
【点睛】
本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义.
十九、解答题
19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换
【分析】
结合图形,根据已知证明过程,写出相关的依据即可.
【详解】
解析:;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换
【分析】
结合图形,根据已知证明过程,写出相关的依据即可.
【详解】
证明:证明:∵,(已知)
∴(垂直的定义)
∴(同位角相等,两直线平行)
∴(两直线平行,同位角相等)
又∵(已知)
∴(同位角相等,两直线平行)
∴(两直线平行,内错角相等)
∴(等量代换)
【点睛】
本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键.
二十、解答题
20.(1),;(2)9
【分析】
(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标
(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积.
【详解】
解:(
解析:(1),;(2)9
【分析】
(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标
(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积.
【详解】
解:(1),
(2)
【点睛】
本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.
二十一、解答题
21.(1)4;5;(2);3;(3)±8.
【分析】
(1)首先估算出的取值范围,即可得出结论;
(2)根据 (1)的结论,得到,即可求得答案;
(3)根据(2)的结论代入计算即可求得答案.
【详解】
解析:(1)4;5;(2);3;(3)±8.
【分析】
(1)首先估算出的取值范围,即可得出结论;
(2)根据 (1)的结论,得到,即可求得答案;
(3)根据(2)的结论代入计算即可求得答案.
【详解】
解:(1)∵16<17<25,
∴,
∴a=4,b=5.
故答案为:4;5
(2)∵,
∴,
由此:的整数部分为6,小数部分为,
∴,.
故答案为:;3
(3)当,时,代入,
.
∴64的平方根为:.
【点睛】
本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.
二十二、解答题
22.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
,
解得:,
∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴正方形的边长是米,
∵<3,
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
二十三、解答题
23.(1)120°;(2)90°-x°;(3)不变,;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠
解析:(1)120°;(2)90°-x°;(3)不变,;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;
(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;
(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案.
【详解】
解:(1)∵AM∥BN,∠A=60°,
∴∠A+∠ABN=180°,
∴∠ABN=120°;
(2)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-x°,
∴∠ABP+∠PBN=180°-x°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=180°-x°,
∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;
(3)不变,∠ADB:∠APB=.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1,
∴∠ADB:∠APB=;
(4)∵AM∥BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠ABC,∠PBN=2∠DBN,
∴∠ABP=∠PBN=2∠DBN=∠ABN,
∵AM∥BN,
∴∠A+∠ABN=180°,
∴∠A+∠ABN=90°,
∴∠A+2∠DBN=90°,
∴∠A+∠DBN=(∠A+2∠DBN)=45°.
【点睛】
本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.
二十四、解答题
24.(1)见解析;(2);见解析;(3)
【分析】
(1)过点作,根据平行线性质可得;
(2)由(1)结论可得:,,再根据角平分线性质可得;
(3)由(2)结论可得:.
【详解】
(1)证明:如图1,过
解析:(1)见解析;(2);见解析;(3)
【分析】
(1)过点作,根据平行线性质可得;
(2)由(1)结论可得:,,再根据角平分线性质可得;
(3)由(2)结论可得:.
【详解】
(1)证明:如图1,过点作,
∵,
∴,
∴,,
又∵,
∴;
(2)如图2,
由(1)可得:,,
∵的平分线与的平分线相交于点,
∴
,
∴;
(3)由(2)可得:,,
∵,,
∴
,
∴;
【点睛】
考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键.
二十五、解答题
25.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A
解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;
②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;
(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;
(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.
【详解】
(1)①过F作FG//AB,如图:
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠ABF=∠BFG,∠CDF=∠DFG,
∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,
∴∠ABF+∠CDF=70,
∴∠DFB=∠ABF+∠CDF=70,
故答案为:70;
②∠F=∠BED,
理由是:分别过E、F作EN//AB,FM//AB,
∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,
∴∠BED=∠ABE+∠CDE,
∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,
∴∠ABE=2∠ABF,∠CDE=2∠CDF,
即∠BED=2(∠ABF+∠CDF);
同理,由FM//AB,可得∠F=∠ABF+∠CDF,
∴∠F=∠BED;
(3)2∠F+∠BED=360°.
如图,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
∵AB∥CD,EG∥AB,
∴CD∥EG,
∴∠DEG+∠CDE=180°,
∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由①得:∠BFD=∠ABF+∠CDF,
∴∠BED=360°-2∠BFD,
即2∠F+∠BED=360°;
(3)∵,∠F=α,
∴,
解得:,
如图,
∵∠CDE 为锐角,DF是∠CDE的角平分线,
∴∠CDH=∠DHB,
∴∠F∠DHB,即,
∴,
故答案为:.
【点睛】
本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.
展开阅读全文