1、2022年人教版七7年级下册数学期末复习题(及答案)一、选择题125的算数平方根是AB5CD52下列哪些图形是通过平移可以得到的()ABCD3若点在轴上,则点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4命题:对顶角相等;过一点有且只有一条直线与已知直线平行;相等的角是对顶角;同位角相等其中错误的有( )ABCD5如图,直线,则的度数为( )ABCD6小雪在作业本上做了四道题目:3;4;9;-6,她做对了的题目有()A1道B2道C3道D4道7如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35,则1的度数为( )A45B125C55D358如图,动
2、点 P在平面直角坐标系中按图中箭头所示方向运动,第 1 次从原点运 动到点(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2), 按这样的运动规律,经过第 2021 次运动后,动点 P的坐标是( )A(2020,1)B(2020,2)C(2021,1)D(2021,2)九、填空题9如果,的平方根是,则_十、填空题10若与点关于轴对称,则的值是_;十一、填空题11在ABC中,若A=60,点O是ABC和ACB角平分线的交点,则BOC=_十二、填空题12如图,直角三角板直角顶点在直线上已知,则的度数为_十三、填空题13将一条长方形纸带按如图方式折叠,若,则的度数为_十四、填
3、空题14如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为_十五、填空题15如果点P(x,y)的坐标满足x+yxy,那么称点P为“美丽点”,若某个“美丽点”P到y轴的距离为2,则点P的坐标为_十六、填空题16如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是_十七、解答题17计算:(1) (2)十八、解答题18求下列各式中的x值:(1)25x2-64=0(2)x3-3=十九、解答题19根据下列证明过程填空:已知:如图,于点,
4、于点,求证:证明:,(已知)(_)(_)(_)又(已知)(_)(_)(_)二十、解答题20如图,在平面直角坐标系中,的顶点都在格点上,点(1)写出点,的坐标;(2)求的面积二十一、解答题21在学习实数内容时,我们通过“逐步逼近”的方法可以计算出的近似值,得出1.41.5利用“逐步逼近“法,请回答下列问题:(1)介于连续的两个整数a和b之间,且ab,那么a ,b (2)x是+2的小数部分,y是1的整数部分,求x ,y (3)(x)y的平方根二十二、解答题22如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平
5、方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23如图,已知/,点是射线上一动点(与点不重合),分别平分和,分别交射线于点(1)当时,的度数是_;(2)当,求的度数(用的代数式表示);(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律(4)当点运动到使时,请直接写出的度数二十四、解答题24如图1,在、内有一条折线(1)求证:;(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;(3)在(2)的条件
6、下,已知和均为钝角,点在直线、之间,且满足,(其中为常数且),直接写出与的数量关系二十五、解答题25已知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 【参考答案】一、选择题1D解析:D【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i
7、的平方是1,i是一个虚数,是复数的基本单位.【详解】,25的算术平方根是:5.故答案为5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.2B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误解析:B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误故选:B【点睛】本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键3D【分
8、析】根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限【详解】在轴上,在第四象限,故选D【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解4D【分析】根据对顶角的定义对进行判断;根据过直线外一点有且只有一条直线与已知直线平行对进行判断;根据平行线的性质对进行判断【详解】对顶角相等,所以正确,不符合题意;过直线外一点有且只有一条直线与已知直线平行,所以不正确,符合题意;相等的角不一定为对顶角,所以不正确,符合题意;两直线平行,同位角相等,所以不正确,符合题意,故选:D【点睛】本题考查了命题与定理,主要是判断命题的真假,属于基础题,
9、熟练掌握这些定理是解题的关键5B【分析】记1顶点为A,2顶点为B,3顶点为C,过点B作BDl1,由平行线的性质可得3+DBC=180,ABD+(1801)=180,由此得到3+2+(1801)=360,再结合已知条件即可求出结果【详解】如图,过点B作BDl1,BDl1l2,3+DBC=180,ABD+(1801)=180,3+DBC+ABD+(1801)=360,即3+2+(1801)=360,又2+3=216,216+(1801)=360,1=36故选:B【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键6A【分析】依据立方根、平方根算术平方根的定义求解即可【详解
10、】=-3,故正确;=4,故错误;=3,故错误;=6,故错误故选:A.【点睛】此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键7C【分析】根据ACB=90,2=35求出3的度数,根据平行线的性质得出1=3,代入即可得出答案【详解】解:ACB=90,2=35,3=180-90-35=55,ab,1=3=55故选:C【点睛】本题考查了平行线的性质和邻补角的定义,解此题的关键是求出3的度数和得出1=3,题目比较典型,难度适中8C【分析】分析点P的运动规律找到循环规律即可【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,因为202150541,所以,前505次循
11、环运动点P解析:C【分析】分析点P的运动规律找到循环规律即可【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,因为202150541,所以,前505次循环运动点P共向右运动50542020个单位,剩余一次运动向右走1个单位,且纵坐标为1故点P坐标为(2021,1),故选:C【点睛】本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题九、填空题9-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值解析:-4【分析】根据题意先求出 ,再代入,即
12、可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值十、填空题101【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案【详解】由点与点的坐标关于y轴对称,得:,解得:,故答案为:【点睛】本题解析:1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案【详解】由点与点的坐标关于y轴对称,得:,解得:,故答案为:【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称
13、的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数十一、填空题11120【分析】由题意可知求出ABC+ACB=120,由BO平分ABC,CO平分ACB,可知OBC+OCB=ABC+ACB=60,所以BOC=180-OBC-OCB=解析:120【分析】由题意可知求出ABC+ACB=120,由BO平分ABC,CO平分ACB,可知OBC+OCB=ABC+ACB=60,所以BOC=180-OBC-OCB=120.【详解】A=60,ABC+ACB=120,BO平分ABC,CO平分ACB,OBC=ABC,OCB=ACB,OBC+OCB=ABC+ACB=60,BOC=180-O
14、BC-OCB=120故答案为120【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理十二、填空题1240【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=CABDAC=90D解析:40【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=CABDAC=90DAE+CAB=180-DAC=901+2=902=90-1=40故答案为:40.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.十三、填空题1336【分析】根
15、据平行线的性质、折叠的性质即可解决【详解】ABCD,如图GEC=1=108由折叠的性质可得:2=FED2+FED+GEC=1802=解析:36【分析】根据平行线的性质、折叠的性质即可解决【详解】ABCD,如图GEC=1=108由折叠的性质可得:2=FED2+FED+GEC=1802= 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质十四、填空题14,【分析】根据算术平方根的定义以及数轴的定义解答即可【详解】解:正方形的面积为5,圆的半径为,点A表示的数为,点表示的数为故答案为:,【点睛】本题考查了实数与数轴,熟解析:,【分析】根据算术平方根的定义以及数
16、轴的定义解答即可【详解】解:正方形的面积为5,圆的半径为,点A表示的数为,点表示的数为故答案为:,【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键十五、填空题15(2,2),(-2,)【分析】直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案【详解】解:某个“美丽点”到y轴的距离为2,x2,x+yxy,当解析:(2,2),(-2,)【分析】直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案【详解】解:某个“美丽点”到y轴的距离为2,x2,x+yxy,当x2时,则y22y,解得:y2,点P的坐标为(2,2),当x2时,则y22y,
17、解得:y,点P的坐标为(2,),综上所述:点P的坐标为(2,2)或(2,)故答案为:(2,2)或(2,)【点睛】此题主要考查了点的坐标,正确分类讨论是解题关键十六、填空题16【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,
18、第3次接着运动到点,第4次运动到点,第5次接着运动到点,横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042,纵坐标为2,0,1,0,每4次一轮,经过第2021次运动后,故动点的纵坐标为2,经过第2021次运动后,动点的坐标是故答案为:【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键十七、解答题17(1)1.2;(2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,解析:(1)1.2;(
19、2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案.试题解析:(1)原式 (2)原式 十八、解答题18(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的
20、形式,再根据立方根的定义计算可得【详解】解:(1)25x2-64=0,25x2=64,则x2=,x=;(2)x3-3=,x3=,则x=故答案为:(1)x=;(2)x=.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义十九、解答题19;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】解析:;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,
21、内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】证明:证明:,(已知)(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键二十、解答题20(1),;(2)9【分析】(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积【详解】解:(解析:(1),;(2)9【分析】(1)根据坐标的特性以及C点坐标,直接可以得出
22、A、B的坐标(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积【详解】解:(1), (2) 【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键二十一、解答题21(1)4;5;(2);3;(3)8【分析】(1)首先估算出的取值范围,即可得出结论;(2)根据 (1)的结论,得到,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解析:(1)4;5;(2);3;(3)8【分析】(1)首先估算出的取值范围,即可得出结论;(2)根据 (1)的结论,得到,即可求得答案;(3)根据(2)的结论代入计算即可
23、求得答案.【详解】解:(1)161725,a4,b5故答案为:4;5(2),由此:的整数部分为6,小数部分为,故答案为:;3(3)当,时,代入,64的平方根为:【点睛】本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.二十二、解答题22(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求
24、解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23(1)120;(2)90-x;(3)不变,;(4)45【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得ABN=180-x,根据角平分线的定义知解析:(1)120;(2)90-x;(
25、3)不变,;(4)45【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得ABN=180-x,根据角平分线的定义知ABP=2CBP、PBN=2DBP,可得2CBP+2DBP=180-x,即CBD=CBP+DBP=90-x;(3)由AMBN得APB=PBN、ADB=DBN,根据BD平分PBN知PBN=2DBN,从而可得APB:ADB=2:1;(4)由AMBN得ACB=CBN,当ACB=ABD时有CBN=ABD,得ABC+CBD=CBD+DBN,即ABC=DBN,根据角平分线的定义可得ABP=PBN=ABN=2DBN,由平行线的性质可得A+ABN=90,即可得出答案【
26、详解】解:(1)AMBN,A=60,A+ABN=180,ABN=120;(2)AMBN,ABN+A=180,ABN=180-x,ABP+PBN=180-x,BC平分ABP,BD平分PBN,ABP=2CBP,PBN=2DBP,2CBP+2DBP=180-x,CBD=CBP+DBP=(180-x)=90-x;(3)不变,ADB:APB=AMBN,APB=PBN,ADB=DBN,BD平分PBN,PBN=2DBN,APB:ADB=2:1,ADB:APB=;(4)AMBN,ACB=CBN,当ACB=ABD时,则有CBN=ABD,ABC+CBD=CBD+DBN,ABC=DBN,BC平分ABP,BD平分PB
27、N,ABP=2ABC,PBN=2DBN,ABP=PBN=2DBN=ABN,AMBN,A+ABN=180,A+ABN=90,A+2DBN=90,A+DBN=(A+2DBN)=45【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键二十四、解答题24(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过解析:(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由(
28、)结论可得:【详解】(1)证明:如图1,过点作,又,;(2)如图2,由(1)可得:,的平分线与的平分线相交于点,;(3)由()可得:,;【点睛】考核知识点:平行线性质和判定的综合运用熟练运用平行线性质和判定是关键二十五、解答题25(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+A解析:(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+ABF,利用角平分线的定义得到AB
29、E+CDE=2ABF+2CDF=2(ABF+CDF),求得ABF+CDF=70,即可求解;分别过E、F作EN/AB,FM/AB,利用平行线的判定和性质得到BED=ABE+CDE,利用角平分线的定义得到BED=2(ABF+CDF),同理得到F=ABF+CDF,即可求解;(2)根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合的结论即可说明BED与BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得【详解】(1)过F作FG/AB,如图:ABC
30、D,FGAB,CDFG,ABF=BFG,CDF=DFG,DFB=DFG+BFG=CDF+ABF,BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,ABE+CDE=2ABF+2CDF=2(ABF+CDF)=60+80=140,ABF+CDF=70,DFB=ABF+CDF=70,故答案为:70;F=BED, 理由是:分别过E、F作EN/AB,FM/AB,EN/AB,BEN=ABE,DEN=CDE,BED=ABE+CDE,DF、BF分别是CDE的角平分线与ABE的角平分线,ABE=2ABF,CDE=2CDF,即BED=2(ABF+CDF);同理,由FM/AB,可得F=ABF+CDF
31、,F=BED;(3)2F+BED=360如图,过点E作EGAB,则BEG+ABE=180,ABCD,EGAB,CDEG,DEG+CDE=180,BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,BED=360-2(ABF+CDF),由得:BFD=ABF+CDF,BED=360-2BFD,即2F+BED=360;(3),F=,解得:,如图,CDE 为锐角,DF是CDE的角平分线,CDH=DHB,FDHB,即,故答案为:【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解