资源描述
2023年人教版七7年级下册数学期末试卷及答案
一、选择题
1.如图,∠1和∠2是同位角的是( )
A. B. C. D.
2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )
A. B.
C. D.
3.平面直角坐标系中,点在( )
A.x轴的正半轴 B.x轴的负半轴 C.y轴的正半轴 D.y轴的负半轴
4.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②一个三角形被截成两个三角形,每个三角形的内角和是90度;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是( )
A.2个 B.3个 C.4个 D.5个
5.如图,已知,平分,平分,则下列判断:①;②平分;③;④中,正确的有( )
A.1个 B.2个 C.3个 D.4个
6.下列运算正确的是( )
A. B. C. D.
7.如图所示,长方形ABCD中,点E在CD边上,AE,BE与线段FG相交构成∠,∠,则∠1,∠2,∠,∠之间的关系是( )
A.∠1+∠2+180°=∠+∠ B.∠+∠2=∠+∠1
C.∠+∠=2(∠1+∠2) D.∠1+∠2=∠a﹣∠
8.如图,在平面直角坐标系中,长方形ABCD的各边分别平行于x轴或y轴,一物体从点A(-2,1)出发,沿矩形ABCD的边按逆时针作环绕运动,速度为1个单位/秒,则经过2022秒后,物体所在位置的坐标为( )
A.(﹣2,1) B.(﹣2,﹣1) C.( 2,﹣1) D.( 2,1)
九、填空题
9.已知是实数,且则的值是_______.
十、填空题
10.若与关于轴对称,则______.
十一、填空题
11.如图,已知//,,∠和∠的角平分线交于点F,∠=__________°.
十二、填空题
12.如图,已知AB∥CD,如果∠1=100°,∠2=120°,那么∠3=_____度.
十三、填空题
13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____.
十四、填空题
14.任何实数a,可用表示不超过a的最大整数,如,现对50进行如下操作:50,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是______.
十五、填空题
15.已知点、,点P在轴上,且的面积为5,则点P的坐标为__________.
十六、填空题
16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为______.
十七、解答题
17.计算:(1)||+2;
(2)
十八、解答题
18.(1)已知am=3,an=5,求a3m﹣2n的值.
(2)已知x﹣y=,xy=,求下列各式的值:
①x2y﹣xy2;
②x2+y2.
十九、解答题
19.根据下列证明过程填空:已知:如图,于点,于点,.求证:.
证明:∵,(已知)
∴(______________)
∴(_____________)
∴(_____________)
又∵(已知)
∴(_________)
∴(_________)
∴(__________)
二十、解答题
20.如图,在平面直角坐标系中,三角形ABC经过平移得到三角形A1B1C1,结合图形,完成下列问题:
(1)三角形ABC先向左平移 个单位,再向 平移 个单位得到三角形A1B1C1.
(2)三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是 .
(3)三角形ABC的面积是 .
二十一、解答题
21.已知是的整数部分,是的小数部分,求代数式的平方根.
二十二、解答题
22.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
二十三、解答题
23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
二十四、解答题
24.如图1,点O在上,,射线交于点C,已知m,n满足:.
(1)试说明//的理由;
(2)如图2,平分,平分,直线、交于点E,则______;
(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论.
二十五、解答题
25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同位角的定义,逐一判断选项,即可.
【详解】
解:A. ∠1和∠2是同位角,故该选项符合题意;
B. ∠1和∠2不是同位角,故该选项不符合题意;
C. ∠1和∠2不是同位角,故该选项不符合题意;
D. ∠1和∠2不是同位角,故该选项不符合题意,
故选 A.
【点睛】
本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.
2.C
【分析】
根据平移的特点即可判断.
【详解】
将图进行平移,得到的图形是
故选C.
【点睛】
此题主要考查平移的特点,解题的关键是熟知平移的定义.
解析:C
【分析】
根据平移的特点即可判断.
【详解】
将图进行平移,得到的图形是
故选C.
【点睛】
此题主要考查平移的特点,解题的关键是熟知平移的定义.
3.B
【分析】
根据坐标轴上点的坐标特征对点A(-1,0)进行判断.
【详解】
解:∵点A的纵坐标为0,
∴点A在x轴上,
∵点A的横坐标为-1,
∴点A在x轴负半轴上.
故选:B.
【点睛】
本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.
4.B
【分析】
依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可.
【详解】
解:①如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;
②一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;
③在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;
④两个无理数的和不一定是无理数,是假命题;
⑤坐标平面内的点与有序数对是一一对应的,是真命题;
其中真命题是①③⑤,个数是3.
故选:.
【点睛】
本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键.
5.B
【分析】
根据平行线的性质求出,根据角平分线定义和平行线的性质求出,推出,再根据平行线的性质判断即可.
【详解】
∵,
∴,∴正确;
∵,
∴,
∵平分,平分,
∴,,
∴,
∴,
∴,
∴根据已知不能推出,∴错误;错误;
∵,,
∴,
∵,
∴,
∴,∴正确;
即正确的有个,
故选:.
【点睛】
本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键.
6.C
【分析】
利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误;
故选:C.
【点睛】
此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键.
7.A
【分析】
根据平行线的性质可得∠AFG+∠BGF=180°,再根据三角形外角的性质可得∠AFG+∠1=∠α,∠2+∠BGF=∠β,由此可得.
【详解】
解:∵在长方形中AD//BC,
∴∠AFG+∠BGF=180°,
又∵∠AFG+∠1=∠α,∠2+∠BGF=∠β,
∴.
故选:A.
【点睛】
本题考查平行线的性质,三角形外角的性质.三角形一个外角等于与它不相邻的两个内角之和,能正确识图是解题关键.
8.C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=16
解析:C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=168×12+6,
∴经过2022秒后,该物体应运动了168圈,且继续运动6个单位,
∴从A点开始按逆时针运动6秒到达了C点,
∴经过2022秒后,物体所在位置的坐标为(2,-1).
故选:C.
【点睛】
本题主要考查了平面直角坐标系、点的坐标规律,解决本题的关键是得出2022=168×12+6,即经过2022秒后,该物体应运动了168圈,且继续运动6个单位.
九、填空题
9.6
【解析】
【分析】
根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.
【详解】
解:由题意得,x−2=0,y-3=0,
解得,x=2,y=3,
xy=6,
故答案为:6.
【点睛
解析:6
【解析】
【分析】
根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.
【详解】
解:由题意得,x−2=0,y-3=0,
解得,x=2,y=3,
xy=6,
故答案为:6.
【点睛】
本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
十、填空题
10.【分析】
根据关于y轴对称的点的坐标特征,即可求出m的值.
【详解】
解:∵A(m,-3)与B(4,-3)关于y轴对称,
∴m=-4,
故答案为:-4.
【点睛】
本题主要考查了关于y轴对称点的坐
解析:
【分析】
根据关于y轴对称的点的坐标特征,即可求出m的值.
【详解】
解:∵A(m,-3)与B(4,-3)关于y轴对称,
∴m=-4,
故答案为:-4.
【点睛】
本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等.
十一、填空题
11.135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°
解析:135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.
【详解】
解:连接BD,
∵∠C+∠CBD+∠CDB=180°,BC⊥CD,
∴∠C=90°,
∴∠CBD+∠CDB=90°.
∵AB∥DE,
∴∠ABD+∠BDE=180°,
∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.
∵∠ABC和∠CDE的平分线交于点F,
∴∠CBF+∠CDF=×270°=135°,
∴∠BFD=360°-90°-135°=135°.
故答案为135.
【点睛】
本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.
十二、填空题
12.40
【分析】
过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.
【详解】
解:如图:过作平行于,
,
,
,
,即,
.
故答案为:40.
【
解析:40
【分析】
过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.
【详解】
解:如图:过作平行于,
,
,
,
,即,
.
故答案为:40.
【点睛】
此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
十三、填空题
13.55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
解析:55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
∵ABDE,
∴∠2=∠3=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
十四、填空题
14.255
【分析】
根据[a]的含义求出这个数的范围,再求最大值.
【详解】
解:设这个数是p,
∵[x]=1
.∴1≤x<2.
∴1≤<2.
∴1≤m<4.
∴1≤<16.
∴1≤p<256.
∵p
解析:255
【分析】
根据[a]的含义求出这个数的范围,再求最大值.
【详解】
解:设这个数是p,
∵[x]=1
.∴1≤x<2.
∴1≤<2.
∴1≤m<4.
∴1≤<16.
∴1≤p<256.
∵p是整数.
∴p的最大值为255.
故答案为:255.
【点睛】
本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键.
十五、填空题
15.(-4,0)或(6,0)
【分析】
设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;
【详解】
如图,设P(m,0),
由题意: •|1-m|•2=5,
∴m=-4或6,
∴P(-4
解析:(-4,0)或(6,0)
【分析】
设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;
【详解】
如图,设P(m,0),
由题意: •|1-m|•2=5,
∴m=-4或6,
∴P(-4,0)或(6,0),
故答案为:(-4,0)或(6,0)
【点睛】
此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.
十六、填空题
16.(4,3)
【分析】
按照反弹规律依次画图即可.
【详解】
解:如图:
根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点
解析:(4,3)
【分析】
按照反弹规律依次画图即可.
【详解】
解:如图:
根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,
2021÷6=336…5,
即点P2021的坐标是(4,3).
故答案为:(4,3).
【点睛】
本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律.
十七、解答题
17.(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算
解析:(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.
十八、解答题
18.(1);(2)①;②
【分析】
(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;
(2)①利用提公因式法因式分解解答即可;
②根据完全平方公式计算即可.
【详解】
解:(1),,
解析:(1);(2)①;②
【分析】
(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;
(2)①利用提公因式法因式分解解答即可;
②根据完全平方公式计算即可.
【详解】
解:(1),,
;
(2)①,,
;
②,,
.
【点睛】
本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.
十九、解答题
19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换
【分析】
结合图形,根据已知证明过程,写出相关的依据即可.
【详解】
解析:;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换
【分析】
结合图形,根据已知证明过程,写出相关的依据即可.
【详解】
证明:证明:∵,(已知)
∴(垂直的定义)
∴(同位角相等,两直线平行)
∴(两直线平行,同位角相等)
又∵(已知)
∴(同位角相等,两直线平行)
∴(两直线平行,内错角相等)
∴(等量代换)
【点睛】
本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键.
二十、解答题
20.(1)5,下,4;(2)(,);(3)7.
【分析】
(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.
【详解】
解:(1)根据题图
解析:(1)5,下,4;(2)(,);(3)7.
【分析】
(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.
【详解】
解:(1)根据题图可知,三角形ABC先向左平移5个单位,再向下平移4个单位得到三角形A1B1C1;
故答案是:5,下,4;
(2)由平移的性质:上加下减,左减右加可知,三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是(,),
故答案是:(,);
(3),
故答案是:7.
【点睛】
本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.
二十一、解答题
21..
【分析】
根据可得,即可得到的整数部分是3,小数部分是,即可求解.
【详解】
解:∵,
∴,
∴的整数部分是3,则,的小数部分是,则,
∴,
∴9的平方根为.
【点睛】
本题考查实数的估算、实数
解析:.
【分析】
根据可得,即可得到的整数部分是3,小数部分是,即可求解.
【详解】
解:∵,
∴,
∴的整数部分是3,则,的小数部分是,则,
∴,
∴9的平方根为.
【点睛】
本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键.
二十二、解答题
22.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
,
解得:,
∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴正方形的边长是米,
∵<3,
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
二十三、解答题
23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
二十四、解答题
24.(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也
解析:(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也易得∠COE的度数,由三角形外角的性质即可求得∠OEF的度数;
(3)不变,分三种情况讨论即可.
【详解】
(1)∵,,且
∴,
∴m=20,n=70
∴∠MOC=90゜-∠AOM=70゜
∴∠MOC=∠OCQ=70゜
∴MN∥PQ
(2)∵∠AON=180゜-∠AOM=160゜
又∵平分,平分
∴,
∵
∴
∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜
故答案为:45.
(3)不变,理由如下:
如图,当0゜<α<20゜时,
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠MOC=∠OCQ=2x
∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON
∴∠DON=45゜+x
∵∠MOE=∠DON=45゜+x
∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x
∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜
当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜
当20゜<α<90゜时,如图
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠NOC=180゜-∠OCQ=180゜-2x
∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON
∴∠AOE=135゜-x
∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜
∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜
综上所述,∠EOF的度数不变.
【点睛】
本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.
二十五、解答题
25.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
展开阅读全文