1、2023年人教版七7年级下册数学期末试卷及答案一、选择题1如图,1和2是同位角的是( )ABCD2如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )ABCD3平面直角坐标系中,点在( )Ax轴的正半轴Bx轴的负半轴Cy轴的正半轴Dy轴的负半轴4下列五个命题:如果两个数的绝对值相等,那么这两个数的平方相等;一个三角形被截成两个三角形,每个三角形的内角和是90度;在同一平面内,垂直于同一条直线的两条直线互相平行;两个无理数的和一定是无理数;坐标平面内的点与有序数对是一一对应的其中真命题的个数是( )A2个B3个C4个D5个5如图,已知,平分,平分,则下列判断:;平分;中,正确的有(
2、)A1个B2个C3个D4个6下列运算正确的是( )ABCD7如图所示,长方形ABCD中,点E在CD边上,AE,BE与线段FG相交构成,则1,2,之间的关系是( )A12180B21C2(12)D12a8如图,在平面直角坐标系中,长方形ABCD的各边分别平行于x轴或y轴,一物体从点A(-2,1)出发,沿矩形ABCD的边按逆时针作环绕运动,速度为1个单位/秒,则经过2022秒后,物体所在位置的坐标为( )A(2,1)B(2,1)C( 2,1)D( 2,1)九、填空题9已知是实数,且则的值是_.十、填空题10若与关于轴对称,则_十一、填空题11如图,已知/,和的角平分线交于点F,=_.十二、填空题1
3、2如图,已知ABCD,如果1100,2120,那么3_度十三、填空题13如图,将一张长方形纸条折成如图的形状,若,则的度数为_十四、填空题14任何实数a,可用表示不超过a的最大整数,如,现对50进行如下操作:50,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_十五、填空题15已知点、,点P在轴上,且的面积为5,则点P的坐标为_十六、填空题16如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时
4、的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为_十七、解答题17计算:(1)|+2;(2)十八、解答题18(1)已知am3,an5,求a3m2n的值(2)已知xy,xy,求下列各式的值:x2yxy2;x2y2.十九、解答题19根据下列证明过程填空:已知:如图,于点,于点,求证:证明:,(已知)(_)(_)(_)又(已知)(_)(_)(_)二十、解答题20如图,在平面直角坐标系中,三角形ABC经过平移得到三角形A1B1C1,结合图形,完成下列问题:(1)三角形ABC先向左平移 个单位,再向 平移 个单位得到三角形A1B1C1(2)
5、三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是 (3)三角形ABC的面积是 二十一、解答题21已知是的整数部分,是的小数部分,求代数式的平方根二十二、解答题22如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23如图1,把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕
6、B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数;当0n180时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由二十四、解答题24如图1,点O在上,射线交于点C,已知m,n满足:(1)试说明/的理由;(2)如图2,平分,平分,直线、交于点E,则_;(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论二十五、解答题25在ABC中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,
7、写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中有两个角相等若存在,并求x的值;若不存在,请说明理由【参考答案】一、选择题1A解析:A【分析】根据同位角的定义,逐一判断选项,即可【详解】解:A. 1和2是同位角,故该选项符合题意;B. 1和2不是同位角,故该选项不符合题意;C. 1和2不是同位角,故该选项不符合题意;D. 1和2不是同位角,故该选项不符合题意,故选 A【点睛】本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键2C
8、【分析】根据平移的特点即可判断【详解】将图进行平移,得到的图形是故选C【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义解析:C【分析】根据平移的特点即可判断【详解】将图进行平移,得到的图形是故选C【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义3B【分析】根据坐标轴上点的坐标特征对点A(-1,0)进行判断【详解】解:点A的纵坐标为0,点A在x轴上,点A的横坐标为-1,点A在x轴负半轴上故选:B【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点4B【分析】依次根据平方的概念、三角形内角和定义、
9、平行线的判定、无理数性质、实数的性质判断即可【详解】解:如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;两个无理数的和不一定是无理数,是假命题;坐标平面内的点与有序数对是一一对应的,是真命题;其中真命题是,个数是3故选:【点睛】本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键5B【分析】根据平行线的性质求出,根据角平分线定义和平行线的性质求出,推出,再根据平行线的性质判断即可【
10、详解】,正确;,平分,平分,根据已知不能推出,错误;错误;,正确;即正确的有个,故选:【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键6C【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选:C.【点睛】此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键7A【分析】根据平行线的性质可得AFG+BGF=180,再根据三角形外角的性质可得AFG+1=,2
11、+BGF=,由此可得【详解】解:在长方形中AD/BC,AFG+BGF=180,又AFG+1=,2+BGF=,故选:A【点睛】本题考查平行线的性质,三角形外角的性质三角形一个外角等于与它不相邻的两个内角之和,能正确识图是解题关键8C【分析】用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置【详解】解:由图可得,长方形的周长为2(12+22)=12,2022=16解析:C【分析】用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置【详解】解:由图可得,长方形的周长为2(12+22)=12,2022=16812+6
12、,经过2022秒后,该物体应运动了168圈,且继续运动6个单位,从A点开始按逆时针运动6秒到达了C点,经过2022秒后,物体所在位置的坐标为(2,-1)故选:C【点睛】本题主要考查了平面直角坐标系、点的坐标规律,解决本题的关键是得出2022=16812+6,即经过2022秒后,该物体应运动了168圈,且继续运动6个单位九、填空题96【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛解析:6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意
13、得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键十、填空题10【分析】根据关于y轴对称的点的坐标特征,即可求出m的值【详解】解:A(m,-3)与B(4,-3)关于y轴对称,m=-4,故答案为:-4【点睛】本题主要考查了关于y轴对称点的坐解析:【分析】根据关于y轴对称的点的坐标特征,即可求出m的值【详解】解:A(m,-3)与B(4,-3)关于y轴对称,m=-4,故答案为:-4【点睛】本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反
14、数,纵坐标相等十一、填空题11135;【分析】连接BD,根据三角形内角和定理得出C+CBD+CDB=180,再由BCCD可知C=90,故CBD+CDB=90,再由ABDE可知ABD+BDE=180解析:135;【分析】连接BD,根据三角形内角和定理得出C+CBD+CDB=180,再由BCCD可知C=90,故CBD+CDB=90,再由ABDE可知ABD+BDE=180,故CBD+CDB+ABD+BDE =270,再由ABC和CDE的平分线交于点F可得出CBF+CDF的度数,由四边形内角和定理即可得出结论【详解】解:连接BD,C+CBD+CDB=180,BCCD,C=90,CBD+CDB=90AB
15、DE,ABD+BDE=180,CBD+CDB+ABD+BDE=90+180=270,即ABC+CDE=270ABC和CDE的平分线交于点F,CBF+CDF=270=135,BFD=360-90-135=135故答案为135【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质十二、填空题1240【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,即可确定出的度数【详解】解:如图:过作平行于,即,故答案为:40【解析:40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得
16、到,即可确定出的度数【详解】解:如图:过作平行于,即,故答案为:40【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键十三、填空题1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示, 170,341801110,又折叠,3455,解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示, 170,341801110,又折叠,3455,ABDE,2355,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题14255【分析】根据a的含义求出这个数的范围,再求
17、最大值【详解】解:设这个数是p,x=1.1x2121m41161p256p解析:255【分析】根据a的含义求出这个数的范围,再求最大值【详解】解:设这个数是p,x=1.1x2121m41161p256p是整数p的最大值为255故答案为:255【点睛】本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键十五、填空题15(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),由题意: |1-m|2=5,m=-4或6,P(-4解析:(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;
18、【详解】如图,设P(m,0),由题意: |1-m|2=5,m=-4或6,P(-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题十六、填空题16(4,3)【分析】按照反弹规律依次画图即可【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点解析:(4,3)【分析】按照反弹规律依次画图即可【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再
19、反射到P点(0,1)之后,再循环反射,每6次一循环,202163365,即点P2021的坐标是(4,3)故答案为:(4,3)【点睛】本题考查了生活中的轴对称现象,点的坐标解题的关键是能够正确找到循环数值,从而得到规律十七、解答题17(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解【详解】(1)|+2=(2)=3【点睛】此题主要考查实数与二次根式的运算解析:(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解【详解】(1)|+2=(2)=3【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则十八、
20、解答题18(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),解析:(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),;(2),;,【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键十九、解答题19;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平
21、行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】解析:;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】证明:证明:,(已知)(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键二十、解答题20(1)5,下,4;(2)(,);(3)7【分析】(1)根据题图直接判
22、断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可【详解】解:(1)根据题图解析:(1)5,下,4;(2)(,);(3)7【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可【详解】解:(1)根据题图可知,三角形ABC先向左平移5个单位,再向下平移4个单位得到三角形A1B1C1;故答案是:5,下,4;(2)由平移的性质:上加下减,左减右加可知,三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是(,),故答案是:(,);(3),故答案是:7【点睛】本题考查作图:
23、平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键二十一、解答题21【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【点睛】本题考查实数的估算、实数解析:【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键二十二、解答题22(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽
24、为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23(1
25、)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,然后根据周角等于360计算即可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=120,2=90;故答案为:120,90;(2)如图2,ABC=60,
26、ABE=180-60-n=120-n,DGEF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BCG+2=360,2=360-ACB-BCG=360-90-(180-n)=90+n;当n=30时,ABC=60,ABF=30+60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);当n=120时,ABDE(GF)【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键二十四、解答题24(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可
27、求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也易得COE的度数,由三角形外角的性质即可求得OEF的度数;(3)不变,分三种情况讨论即可【详解】(1),且,m=20,n=70MOC=90AOM=70MOC=OCQ=70MNPQ(2)AON=180AOM=160又平分,平分, OEF=OCF+COE=35+10=45故答案为:45(3)不变,理由如下:如图,当
28、020时,CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQMOC=OCQ=2xAON=36090(1802x)=90+2x,OD平分AONDON=45+xMOE=DON=45+xCOE=MOEMOC=45+x2x=45xOEF=COE+OCF=45x+x=45当=20时,OD与OB共线,则OCQ=90,由CF平分OCQ知,OEF=45当2090时,如图CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQNOC=180OCQ=1802xAON=90+(1802x)=2702x,OD平分AONAOE=135xCOE=90AOE=90(135x)=x45OEF
29、=OCFCOE=x(x45)=45综上所述,EOF的度数不变【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便二十五、解答题25(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,解析:(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,再由根据角的和差计算即可得C的度数,进而得B的度数根据翻折的性
30、质和三角形外角及三角形内角和定理,用含x的代数式表示出FDE、DFE的度数,分三种情况讨论求出符合题意的x值即可【详解】(1)由翻折的性质可得:EB,BAC90,AEBC,DFE90,180BAC180DFE90,即:BCEFDE90,CFDE,ACDE,CAFE,CAFEB故与B相等的角有CAF和E;BAC90,AEBC,BAFCAF90, CFA180(CAFC)90BAFCAFCAFC90BAFC又ACDE,CCDE,故与C相等的角有CDE、BAF;(2)又,C70,B20;BADx, B20则,由翻折可知:, , ,当FDEDFE时,, 解得:;当FDEE时,解得:(因为0x45,故舍去);当DFEE时,解得:(因为0x45,故舍去);综上所述,存在这样的x的值,使得DEF中有两个角相等且【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识