1、人教版七年级数学下册期末考试试卷(附答案)一、选择题1实数4的算术平方根是()AB2CD162下列车标,可看作图案的某一部分经过平移所形成的是( )A BCD3在平面直角坐标系中,点(1,m2+1)一定在()A第一象限B第二象限C第三象限D第四象限4下列给出四个命题:如果两个角相等,那么它们是对顶角;如果两个角互为邻补角,那么它们的平分线互相垂直;如果两条直线垂直于同一条直线,那么这两条直线平行;如果两条直线平行于同一条直线,那么这两条直线平行其中为假命题的是()ABCD5已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,则的度数为( )ABC或D或6若a216,2,则a+b的值
2、为()A12B4C12或4D12或47如图,直线,E为上一点,G为上一点,垂足为F,若,则的度数为( )ABCD8如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A(0,2)B(4,0)C(0,2)D(4,0)九、填空题9计算:=_十、填空题10已知点与点关于轴对称,则的值为_十一、填空题11如图,AD、AE分别是ABC的角平分线和高,B=60,C=70,则EAD=_十二、填空题12如图
3、,设,那么,的关系式_十三、填空题13将一张长方形纸条ABCD沿EF折叠后,EC交AD于点G,若FGE62,则GFE的度数是_十四、填空题14规定运算:,其中为实数,则_十五、填空题15平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足的数量关系式为_十六、填空题16如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点、,那么点的坐标为_十七、解答题17计算:(1) (2)十八、解答题18求下列各式中的x值:(1)25x2-64=0(2)x3-3=十九、解答题19完成下
4、面的证明:如图,点、分别是三角形的边、上的点,连接,连接交于点,求证:证明:(已知)(_)又(已知)(_)(_)(_)二十、解答题20三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,(1)将向右平移4个单位长度得到,画出平移后的;(2)将向下平移5个单位长度得到,画出平移后的;(3)直接写出三角形的面积为_平方单位(直接写出结果)二十一、解答题21数学活动课上,王老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用1表示它的小数部分”王老师说:“小明同学的说法是正确的,因
5、为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:的整数部分是 ;小数部分是 (2)已知8+x+y,其中x是一个整数,且0y1,求出2x+(y-)2012的值二十二、解答题22有一块面积为100cm2的正方形纸片(1)该正方形纸片的边长为 cm(直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3小丽能用这块纸片裁剪出符合要求的纸片吗?二十三、解答题23已知,ABDE,点C在AB上方,连接BC、CD(1)如图1,求证:BCDCDEABC;(2)如图2,过点C作CFBC交ED的延长线于点F,探究ABC和F之
6、间的数量关系;(3)如图3,在(2)的条件下,CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分ABC,求BGDCGF的值二十四、解答题24将两块三角板按如图置,其中三角板边,(1)下列结论:正确的是_如果,则有;如果,则平分(2)如果,判断与是否相等,请说明理由(3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数二十五、解答题25在ABC中,射线AG平分BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DEAC交AB于点E(1)如图1,点D在线段CG上运动时,DF平分EDB若BAC100,C30,则AFD;
7、若B40,则AFD;试探究AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,BDE的角平分线所在直线与射线AG交于点F试探究AFD与B之间的数量关系,并说明理由【参考答案】一、选择题1B解析:B【分析】根据算术平方根的定义,求一个非负数a的算术平方根,也就是求一个非负数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0【详解】解:22=4,4的算术平方根是2故选B【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.2D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不是
8、经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义3B【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限【详解】解:因为点(1,m2+1),横坐标10,纵坐标m2+1一定大于0,所以满足点在第二象限的条件故选:B【点睛】本题主要考查平
9、面直角坐标系里象限的坐标,熟练掌握每个象限的坐标符号特点是解题的关键4C【分析】根据两个相等的角不一定是对顶角对进行判定,根据邻补角与角平分线的性质对进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对进行判断,根据平行线的判定对进行判断【详解】解:如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意;如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意;在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意;如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意;故选:C【点睛】本题考查了
10、命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可5D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DEBC可得出ADE的度数,结合ADC=ADE+CDE可求出ADC的度数;当点D在线段AB的延长线上时,由DEBC可得出ADE的度数,结合ADC=ADE-CDE可求出ADC的度数综上,此题得解【详解】解:当点D在线段AB上时,如图1所示DEBC,ADE=ABC=84,ADC=ADE+CDE=84+20=104;当点D在线段AB的延长线上时,如图2所
11、示DEBC,ADE=ABC=84,ADC=ADE-CDE=84-20=64综上所述:ADC=104或64故选:D【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出ADC的度数是解题的关键6D【分析】根据平方根和立方根的意义求出a、b即可【详解】解:a216,a4,2,b8,a+b4+8或4+8,即a+b12或4故选:D【点睛】本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个7C【分析】根据内角和定理可知的度数,再根据平行线的性质即可求得的度数【详解】故选:C【点睛】本题主要考查了
12、三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键8A【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍解析:A【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍,时间相同,物体甲与物体乙的路程比为1:3,由题意知:第一次相遇物体甲与物体乙行的路程和为241,物体甲行的路程为246,物体乙行的路程为241
13、8,在DE边相遇;第二次相遇物体甲与物体乙行的路程和为242,物体甲行的路程为24212,物体乙行的路程为24236,在DC边相遇;第三次相遇物体甲与物体乙行的路程和为243,物体甲行的路程为24318,物体乙行的路程为24354,在BC边相遇;第四次相遇物体甲与物体乙行的路程和为244,物体甲行的路程为24424,物体乙行的路程为24472,在A点相遇;此时甲乙回到原出发点,则每相遇四次,两点回到出发点,202145051,故两个物体运动后的第2020次相遇地点的是点A,即物体甲行的路程为2416,物体乙行的路程为24118时,达到第2021次相遇,此时相遇点的坐标为:(0,2),故选:A【
14、点睛】本题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题九、填空题93【详解】试题分析:根据算术平方根的定义=3故答案是3考点:算术平方根解析:3【详解】试题分析:根据算术平方根的定义=3故答案是3考点:算术平方根十、填空题10-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(a,2019)与点是关于y轴的对称点,a=-2020,b=2019,a+b=-1故答案为:解析:-1【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案【详解】解:点A(a,2019)与点是关于y轴的对称点,a=-2020,b=
15、2019,a+b=-1故答案为:-1【点睛】本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系十一、填空题11;【详解】解:由题意可知,B=60,C=70,所以,所以,在三角形BAE中,所以EAD=5故答案为:5【点睛】本题属于对角平分线和角度基本知识的变换求解解析:;【详解】解:由题意可知,B=60,C=70,所以,所以,在三角形BAE中,所以EAD=5故答案为:5【点睛】本题属于对角平分线和角度基本知识的变换求解十二、填空题12【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】本题考查了平解析:【分析】过作
16、,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;十三、填空题1359【分析】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿解析:59【分析】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿EF折叠,1=2,ADB
17、C,FGE+GEC=180,FGE=62,GEC=180-62=118,1=2=GEC=59,ADBC,GFE=2,GFE=59故答案为59【点睛】本题主要考查翻折问题,平行线的性质,求解GEC的度数是解题的关键十四、填空题144【分析】根据题意将原式展开,然后化简绝对值,求解即可【详解】=4故答案为4【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可【详解】=4故答案为4【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键十五、填空题15【分析】连
18、接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,解析:【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,AOB=90,点P(m,n)为第三象限内一点,整理可得:;故答案为:【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形十六、填空题16【分析】结合图象可知,纵坐标每四个点循环一次,而2
19、5=46+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解【详解】结合图像可知,纵坐标每四个点一个循环,解析:【分析】结合图象可知,纵坐标每四个点循环一次,而25=46+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解【详解】结合图像可知,纵坐标每四个点一个循环,1,是第七个周期的第一个点,每一个周期第一点的坐标为:,(12,1)故答案为:(12,1)【点睛】本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键十七、解答题17(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据
20、乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.十八、解答题18(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方
21、根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得【详解】解:(1)25x2-64=0,25x2=64,则x2=,x=;(2)x3-3=,x3=,则x=故答案为:(1)x=;(2)x=.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义十九、解答题19两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案【详解】证明:(已知)(两直线平行,同位角相等)解析:两直线平行,同位角相等;等量代换;同位角相等,两直
22、线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案【详解】证明:(已知)(两直线平行,同位角相等)又(已知)(等量代换)(同位角相等,两直线平行)(两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应解析:(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、
23、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积【详解】解:(1)平移后的三角形如下图所示;(2)平移后的三角形如下图所示;(3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,SABC【点睛】本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积
24、的差二十一、解答题21(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答【详解】解:(1)12,的整数部分是1;小解析:(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答【详解】解:(1)12,的整数部分是1;小数部分是-1;(2)解:12,98+10,8+x+y,且x是一个整数,0y1,x9,y8+91,2x+(y-)2012=29+(1-)2012=18+1=19【点睛】本题考查了估算无理数的大小,解决本题的关键是估算的范围
25、二十二、解答题22(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;故答案为:10;(2)长方形纸片的长宽之比为4:3,设长方形纸片的长为4xcm,则宽为3xcm,则4x3x90,12x290,x2,解得:x或x-(负值不符合题
26、意,舍去),长方形纸片的长为2cm,56,102,小丽不能用这块纸片裁出符合要求的纸片【点睛】本题考查了算术平方根解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二十三、解答题23(1)证明见解析;(2);(3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2);(3)【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作
27、,同(1)的方法,先根据平行线的性质得出,从而可得,再根据垂直的定义可得,由此即可得出结论;(3)过点作,延长至点,先根据平行线的性质可得,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案【详解】证明:(1)如图,过点作,即,;(2)如图,过点作,即,;(3)如图,过点作,延长至点,平分,平分,由(2)可知,又,【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键二十四、解答题24(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定
28、即可;(2)利用角的和差,结合CAB=DAE=90进行判断解析:(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到EAB角度所有可能的值【详解】解:(1)BFD=60,B=45,BAD+D=BFD+B=105,BAD=105-30=75,BADB,BC和AD不平行,故错误;BAC+DAE=180,BAE+CAD=BAE+CAE+DAE=180,故正确;若BCAD,则BAD=B=45,BAE=45,即AB平分
29、EAD,故正确;故答案为:;(2)相等,理由是:CAD=150,BAE=180-150=30,BAD=60,BAD+D=BFD+B,BFD=60+30-45=45=C;(3)若ACDE,则CAE=E=60,EAB=90-60=30;若BCAD,则B=BAD=45,EAB=45;若BCDE,则E=AFB=60,EAB=180-60-45=75;若ABDE,则D=DAB=30,EAB=30+90=120;若AEBC,则C=CAE=45,EAB=45+90=135;综上:EAB的度数可能为30或45或75或120或135【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情
30、况画出图形,学会用分类讨论的思想思考问题二十五、解答题25(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由解析:(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由角平分线定义得出,由三角形的外角性质得出DGF=100,再由三角形的外角性质即可得出结果;若B=40,则BAC+C=180-40=140,由角平分线定义得出,由三角形的外角性质即可得出结果;由得:EDB=C,
31、由三角形的外角性质得出DGF=B+BAG,再由三角形的外角性质即可得出结论;(2)由(1)得:EDB=C,,由三角形的外角性质和三角形内角和定理即可得出结论【详解】(1)若BAC=100,C=30,则B=180-100-30=50,DEAC,EDB=C=30,AG平分BAC,DF平分EDB,DGF=B+BAG=50+50=100,AFD=DGF+FDG=100+15=115;若B=40,则BAC+C=180-40=140,AG平分BAC,DF平分EDB,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=故答案为:115;110;理由如下:由得:EDB=C,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=;(2)如图2所示:;理由如下:由(1)得:EDB=C,AHF=B+BDH,AFD=180-BAG-AHF【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键