资源描述
人教七年级下册数学期末测试(附答案)
一、选择题
1.如图,和不是同旁内角的是( )
A. B. C. D.
2.下列哪些图形是通过平移可以得到的( )
A. B.
C. D.
3.下列各点中,在第三象限的点是( )
A. B. C. D.
4.下列四个命题:①的平方根是;②是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( )
A.0个 B.1个 C.2个 D.3个
5.如图,,平分,,点在的延长线上,连接,,下列结论:①;②平分;③;④.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
6.下列说法正确的是( )
A.9的立方根是3 B.算术平方根等于它本身的数一定是1
C.﹣2是4的一个平方根 D.的算术平方根是2
7.已知直线,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=25°,则∠2的度数为( )
A.55° B.45° C.30° D.25°
8.如图,在平面直角坐标系中有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至,…依照此规律跳动下去,点第2020次跳动至的坐标为( )
A. B. C. D.
九、填空题
9.若=0,则=________ .
十、填空题
10.若点与关于轴对称,则____________________________.
十一、填空题
11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________.
十二、填空题
12.如图,直线 a//b,若∠1 = 40°,则∠2 的度数是______.
十三、填空题
13.如图,在中,,点D是的中点,点E在上,将沿折叠,若点B的落点在射线上,则与所夹锐角的度数是________.
十四、填空题
14.按下面的程序计算:
若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________.
十五、填空题
15.如果点P(m+3,m﹣2)在x轴上,那么m=_____.
十六、填空题
16.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为 _____________.
十七、解答题
17.计算:
(1)|﹣2|+(﹣3)2﹣;
(2);
(3).
十八、解答题
18.求下列各式中x的值:
(1)9x2-25=0;
(2)(x+3)3+27=0.
十九、解答题
19.如图,点F在线段AB上,点E、G在线段CD上,AB∥CD.
(1)若BC平分∠ABD,∠D=100°,求∠ABC的度数;
解:∵AB∥CD(已知),
∴∠ABD+∠D=180°( ).
∵∠D=100°(已知),
∴∠ABD=80°.
又∵BC平分∠ABD,(已知),
∴∠ABC=∠ABD= °( ).
(2)若∠1=∠2,求证:AE∥FG(不用写依据).
二十、解答题
20.如图,已知在平面直角坐标系中的位置如图所示.
(1)写出三个顶点的坐标;
(2)求出的面积;
(3)在图中画出把先向左平移5个单位,再向上平移2个单位后所得的.
二十一、解答题
21.已知a是的整数部分,b是的小数部分.
(1)求a,b的值;
(2)求的平方根.
二十二、解答题
22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)
二十三、解答题
23.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= .
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数.
二十四、解答题
24.如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足.
(1)点的坐标为______;点的坐标为______.
(2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束.的中点的坐标是,设运动时间为.问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由.
(3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.
二十五、解答题
25.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.
(1)若,________.
(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.
②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.
【参考答案】
一、选择题
1.B
解析:B
【分析】
两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.根据同旁内角的概念可得答案.
【详解】
解:选项A、C、D中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;
选项B中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角.
故选:B.
【点睛】
此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U”形.
2.B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
解析:B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
故选:B.
【点睛】
本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键.
3.D
【分析】
应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标.
【详解】
解:∵第三象限的点的横坐标是负数,纵坐标也是负数,
∴结合选项符合第三象限的点是(-2,-4).
故选:D.
【点睛】
本题主要考查了点在第三象限内点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可.
【详解】
解:①,3的平方根是,故原命题错误,是假命题,不符合题意;
②是5的算术平方根,正确,是真命题,符合题意;
③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;
④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.
真命题只有②,
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5.D
【分析】
结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.
【详解】
解:∵ABCD,
∴∠1=∠2,
∵AC平分∠BAD,
∴∠2=∠3,
∴∠1=∠3,
∵∠B=∠CDA,
∴∠1=∠4,
∴∠3=∠4,
∴BCAD,
∴①正确;
∴CA平分∠BCD,
∴②正确;
∵∠B=2∠CED,
∴∠CDA=2∠CED,
∵∠CDA=∠DCE+∠CED,
∴∠ECD=∠CED,
∴④正确;
∵BCAD,
∴∠BCE+∠AEC= 180°,
∴∠1+∠4+∠DCE+∠CED= 180°,
∴∠1+∠DCE = 90°,
∴∠ACE= 90°,
∴AC⊥EC,
∴③正确
故其中正确的有①②③④,4个,
故选:D.
【点睛】
此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.
6.C
【解析】
【分析】
利用立方根、平方根和算术平方根的定义进行判断即可.
【详解】
解:9的立方根是,故A项错误;
算术平方根等于它本身的数是1和0,故B项错误;
﹣2是4的一个平方根,故C项正确;
的算术平方根是,故D项错误;
故选C.
【点睛】
本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键.
7.A
【分析】
易求的度数,再利用平行线的性质即可求解.
【详解】
解:,,
,
直线,
,
故选:A.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质是解题的关键.
8.A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.
【详解】
解:如图,
解析:A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.
【详解】
解:如图,观察发现,第2次跳动至点的坐标是,
第4次跳动至点的坐标是,
第6次跳动至点的坐标是,
第8次跳动至点的坐标是,
第次跳动至点的坐标是,
则第2020次跳动至点的坐标是,
故选:A.
【点睛】
本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
九、填空题
9.9
【解析】
试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.
考点:非负数的性质.
解析:9
【解析】
试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.
考点:非负数的性质.
十、填空题
10.0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点
解析:0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.
十一、填空题
11.﹣
【详解】
∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,
∴3a+5+a-3=0,
∴a=﹣.
故答案是:﹣.
解析:﹣
【详解】
∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,
∴3a+5+a-3=0,
∴a=﹣.
故答案是:﹣.
十二、填空题
12.140°
【详解】
解:∵a∥b,∠1=40°,
∴∠3=∠1=40°,
∴∠2=180°-∠3=180°-40°=140°.
故答案为:140°.
解析:140°
【详解】
解:∵a∥b,∠1=40°,
∴∠3=∠1=40°,
∴∠2=180°-∠3=180°-40°=140°.
故答案为:140°.
十三、填空题
13..
【分析】
根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数.
【详解】
如下图,连接DE,与
解析:.
【分析】
根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数.
【详解】
如下图,连接DE,与相交于点O,
将 △BDE 沿 DE 折叠,
,
,
又∵D为BC的中点,,
,
,
,
,
即与所夹锐角的度数是.
故答案为:.
【点睛】
本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键.
十四、填空题
14.131或26或5.
【解析】
试题解析:由题意得,5n+1=656,
解得n=131,
5n+1=131,
解得n=26,
5n+1=26,
解得n=5.
解析:131或26或5.
【解析】
试题解析:由题意得,5n+1=656,
解得n=131,
5n+1=131,
解得n=26,
5n+1=26,
解得n=5.
十五、填空题
15.【分析】
根据x轴上的点的纵坐标等于0列式计算即可得解.
【详解】
∵点P(m+3,m﹣2)在x轴上,
∴m﹣2=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记x轴上的点的纵
解析:【分析】
根据x轴上的点的纵坐标等于0列式计算即可得解.
【详解】
∵点P(m+3,m﹣2)在x轴上,
∴m﹣2=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.
十六、填空题
16.(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且
解析:(﹣506,505)
【分析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.
【详解】
解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,
∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,
∵2021÷4=505…1,
∴点P2021在第二象限,
∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),
∴点P2021(﹣506,505),
故答案为:(﹣506,505).
【点睛】
本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.
十七、解答题
17.(1)9;(2)-;(3)-3.
【解析】
【分析】
根据运算法则和运算顺序,依次计算即可.
【详解】
解:(1)原式=2+9﹣2=9,
(2)原式=(1+3﹣5) =﹣ ,
(3)原式=3﹣3﹣4
解析:(1)9;(2)-;(3)-3.
【解析】
【分析】
根据运算法则和运算顺序,依次计算即可.
【详解】
解:(1)原式=2+9﹣2=9,
(2)原式=(1+3﹣5) =﹣ ,
(3)原式=3﹣3﹣4+1=﹣3.
【点睛】
本题考查了实数的运算,熟练掌握相关运算法则是解题关键.
十八、解答题
18.(1)x=;(2)x=-6
【分析】
(1)经过移项,系数化为1后,再开平方即可;
(2)移项后开立方,再移项运算即可.
【详解】
(1)
解:
(2)
解:
【点睛】
本题主要考查了实数的
解析:(1)x=;(2)x=-6
【分析】
(1)经过移项,系数化为1后,再开平方即可;
(2)移项后开立方,再移项运算即可.
【详解】
(1)
解:
(2)
解:
【点睛】
本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键.
十九、解答题
19.(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析
【分析】
(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可;
(2)根据平行线的性质得到∠1=∠FGC,等
解析:(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析
【分析】
(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可;
(2)根据平行线的性质得到∠1=∠FGC,等量代换得到∠2=∠FGC,即可判定AE∥FG.
【详解】
(1)∵AB∥CD(已知),
∴∠ABD+∠D=180°(两直线平行,同旁内角互补),
∵∠D=100°(已知),
∴∠ABD=80°,
又∵BC平分∠ABD(已知),
∴∠ABC=∠ABD=40°(角平分线的定义).
故答案为:两直线平行,同旁内角互补;40;角平分线的定义;
(2)证明:∵AB∥CD,
∴∠1=∠FGC,
又∵∠1=∠2,
∴∠2=∠FGC,
∴AE∥FG.
【点睛】
此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键.
二十、解答题
20.(1);(2);(3)图见解析.
【分析】
(1)根据点在平面直角坐标系中的位置即可得;
(2)利用一个长方形的面积减去三个直角三角形的面积即可得;
(3)根据平移作图的方法即可得.
【详解】
解:
解析:(1);(2);(3)图见解析.
【分析】
(1)根据点在平面直角坐标系中的位置即可得;
(2)利用一个长方形的面积减去三个直角三角形的面积即可得;
(3)根据平移作图的方法即可得.
【详解】
解:(1)由点在平面直角坐标系中的位置:;
(2)的面积为;
(3)如图所示,即为所求.
【点睛】
本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.
二十一、解答题
21.(1)a=2,b=;(2)±3
【分析】
(1)首先估算出的范围,从而得到和的范围,可得a,b值;
(2)将a,b的值代入计算,再求平方根即可.
【详解】
解:(1)∵,
∴,
∴,,
∴a=2,b
解析:(1)a=2,b=;(2)±3
【分析】
(1)首先估算出的范围,从而得到和的范围,可得a,b值;
(2)将a,b的值代入计算,再求平方根即可.
【详解】
解:(1)∵,
∴,
∴,,
∴a=2,b=;
(2)
=
=
∴的平方根为±3.
【点睛】
此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键.
二十二、解答题
22.(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3
解析:(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案.
试题解析:(1)∵正方形的面积是 25 平方分米,
∴正方形工料的边长是 5 分米;
(2)设长方形的长宽分别为 3x 分米、2x 分米,
则 3x•2x=18,
x2=3,
x1= ,x2=(舍去),
3x=3>5,2x=2<5 ,
即这块正方形工料不合格.
二十三、解答题
23.(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线
解析:(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求.
【详解】
解:(1)过作,
,
,
,,
,
故答案为:;
(2).
理由如下:
过作,
,
,
,,
,,
;
(3),
设,则,
,,
又,,
,
平分,
,
,
,
即,解得,
,
.
【点睛】
本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.
二十四、解答题
24.(1),;(2)1;(3)不变,值为2
【分析】
(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案;
(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-
解析:(1),;(2)1;(3)不变,值为2
【分析】
(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案;
(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据S△ODP=S△ODQ,列出关于t的方程,求得t的值即可;
(3)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.
【详解】
解:(1)∵+|b-2|=0,
∴a-2b=0,b-2=0, 解得a=4,b=2,
∴A(0,4),C(2,0).
(2)存在, 理由:如图1中,D(1,2),
由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,
∴0<t≤2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,
∴S△DOP=•OP•yD=(2-t)×2=2-t,S△DOQ=•OQ•xD=×2t×1=t,
∵S△ODP=S△ODQ,
∴2-t=t,
∴t=1.
(3)结论:的值不变,其值为2.理由如下:如图2中,
∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO,
∴∠GOC+∠ACO=180°,
∴OG∥AC,
∴∠1=∠CAO,
∴∠OEC=∠CAO+∠4=∠1+∠4,
如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,
∴∠PHO=∠GOF=∠1+∠2,
∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,
∴=2.
【点睛】
本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.
二十五、解答题
25.(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′
解析:(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.
【详解】
解:(1)∵,,
∴∠A′=∠A=180°-(65°+70°)=45°,
∴∠A′ED+∠A′DE =180°-∠A′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;
(2)①,理由如下
由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,
∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;
②,理由如下:
∵是的一个外角
∴.
∵是的一个外角
∴
又∵
∴
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【点睛】
题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.
展开阅读全文