资源描述
人教版中学七年级下册数学期末考试题含答案
一、选择题
1.如图,∠1和∠2不是同位角的是( )
A. B.
C. D.
2.下列运动中,属于平移的是( )
A.冷水加热过程中,小气泡上升成为大气泡 B.急刹车时汽车在地面上的滑动
C.随手抛出的彩球运动 D.随风飘动的风筝在空中的运动
3.下列各点中,在第二象限的是( )
A. B. C. D.
4.下列命题是假命题的是( )
A.两个锐角的和是钝角
B.两条直线相交成的角是直角,则两直线垂直
C.两点确定一条直线
D.三角形中至少有两个锐角
5.如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:①;②;③;④.结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
6.下列说法错误的是( )
A.-8的立方根是-2 B.
C.的相反数是 D.3的平方根是
7.如图,在中,∠AEC=50°,平分,则的度数为( )
A.25° B.30° C.35° D.40°
8.如图,在平面直角坐标系中有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至,…依照此规律跳动下去,点第2020次跳动至的坐标为( )
A. B. C. D.
九、填空题
9.如果一个正方形的面积为3,则这个正方形的边长是 _____________.
十、填空题
10.已知点与点关于轴对称,那么点关于轴的对称点的坐标为__________.
十一、填空题
11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________.
十二、填空题
12.已知a∥b,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.
十三、填空题
13.如图1是的一张纸条,按图1→图2→图3,把这一纸条先沿折叠并压平,再沿折叠并压平,若图2中,则图3中的度数为_______.
十四、填空题
14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=.
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
十五、填空题
15.若点P在轴上,则点P的坐标为____.
十六、填空题
16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为______.
十七、解答题
17.(1)计算
(2)计算:
十八、解答题
18.求下列各式中实数的x值.
(1)25x2﹣36=0
(2)|x+2|=π
十九、解答题
19.如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.
请在下列括号中填上理由:
证明:因为(已知),所以(_______).
又因为(已知),所以,即,
所以_______(同位角相等,两直线平行),所以(_______).
二十、解答题
20.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,每个小正方形边长为1个单位长度.
(1)将△ABC向右平移6个单位,再向下平移3个单位得到△A1B1C1,画出图形,并写出各顶点坐标;
(2)求△ABC的面积.
二十一、解答题
21.数学活动课上,张老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小数部分”张老师说:“晶晶同学的说法是正确的,因为的整数部分是,将这个数减去其整数部分,差就是小数部分,”请你解答:已知,其中是一个整数,且,请你求出的值.
二十二、解答题
22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.
(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)
(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)
二十三、解答题
23.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
二十四、解答题
24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且.
(1)填空:_________;
(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?
(3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.
二十五、解答题
25.已知,,点为射线上一点.
(1)如图1,写出、、之间的数量关系并证明;
(2)如图2,当点在延长线上时,求证:;
(3)如图3,平分,交于点,交于点,且:,,,求的度数.
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可.
【详解】
解:A、∠1和∠2是同位角,故此选项不符合题意;
B、∠1和∠2是同位角,故此选项不符合题意;
C、∠1和∠2是同位角,故此选项不符合题意;
D、∠1和∠2不是同位角,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了同位角的定义,正确掌握同位角定义是解题关键.
2.B
【详解】
解:A、气泡在上升的过程中变大,不属于平移;
B、急刹车时汽车在地面上的滑动属于平移;
C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D、随风飘动的树叶在空中的运动,
解析:B
【详解】
解:A、气泡在上升的过程中变大,不属于平移;
B、急刹车时汽车在地面上的滑动属于平移;
C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.
故选B.
【点睛】
此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.B
【分析】
根据各象限内点的坐标特征对各选项分析判断即可得解.
【详解】
解:A、点在x轴上,不符合题意;
B、点在第二象限,符合题意;
C、点在第三象限,不符合题意;
D、点在第四象限,不符合题意;
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.A
【分析】
选出假命题只要举出反例即可,两个锐角的和是钝角,反例:两个锐角分别是有20°、30°,和是50°,还是锐角,因此是假命题.
【详解】
A.两个锐角的和是钝角是假命题,如两个锐角分别是20°、30°, 而它们的和是50°,还是锐角,不是钝角;
B.两条直线相交成的角是直角则两直线垂直是真命题;
C.两点确定一条直线是真命题;
D.三角形中至少有两个锐角是真命题.
故选: A
【点睛】
本题通过判断真假命题来考查了解各类知识的概念和意义,熟练掌握各类知识是解题的关键.
5.D
【分析】
根据平行线的性质可得,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.
【详解】
解:,,
,
平分,
,故①正确;
,
,
,故②正确;
,,
,故③正确;
,,
,故④正确.
正确为①②③④,
故选:D.
【点睛】
本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.
6.B
【分析】
根据平方根以及立方根的概念进行判断即可.
【详解】
A、-8的立方根为-2,这个说法正确;
B、|1-|=-1,这个说法错误;
C.-的相反数是,这个说法正确;
D、3的平方根是±,这个说法正确;
故选B.
【点睛】
本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.
7.A
【分析】
根据平行线的性质得到∠ABC=∠BCD,∠ECD=∠AEC=50°再根据角平分线的定义得到∠BCE=∠BCD =∠ECD=25°,由此即可求解.
【详解】
解:∵AB∥CD,
∴∠ABC=∠BCD,∠ECD=∠AEC=50°
∵CB平分∠DCE,
∴∠BCE=∠BCD =∠ECD=25°
∠ABC=∠BCD=25°
故选A.
【点睛】
本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键.
8.A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.
【详解】
解:如图,
解析:A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.
【详解】
解:如图,观察发现,第2次跳动至点的坐标是,
第4次跳动至点的坐标是,
第6次跳动至点的坐标是,
第8次跳动至点的坐标是,
第次跳动至点的坐标是,
则第2020次跳动至点的坐标是,
故选:A.
【点睛】
本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
九、填空题
9.【分析】
设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.
【详解】
解:设这个正方形的边长为x(x>0).
由题意得:x2=3.
∴x=.
故答案为:.
【点睛
解析:
【分析】
设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.
【详解】
解:设这个正方形的边长为x(x>0).
由题意得:x2=3.
∴x=.
故答案为:.
【点睛】
本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键.
十、填空题
10.【分析】
先将a,b求出来,再根据对称性求出坐标即可.
【详解】
根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.
P(2,﹣3)关于y轴对称的点(﹣2,﹣3)
故答案为: (﹣2,﹣
解析:
【分析】
先将a,b求出来,再根据对称性求出坐标即可.
【详解】
根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.
P(2,﹣3)关于y轴对称的点(﹣2,﹣3)
故答案为: (﹣2,﹣3).
【点睛】
本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键.
十一、填空题
11.﹣
【详解】
∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,
∴3a+5+a-3=0,
∴a=﹣.
故答案是:﹣.
解析:﹣
【详解】
∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,
∴3a+5+a-3=0,
∴a=﹣.
故答案是:﹣.
十二、填空题
12.60°
【分析】
如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.
【详解】
解:如图,∵∠1=30°,
∴∠3=∠1=30°,
∵a∥b
解析:60°
【分析】
如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.
【详解】
解:如图,∵∠1=30°,
∴∠3=∠1=30°,
∵a∥b,
∴∠4=∠3=30°,
∴∠5=180°-∠4-90°=60°,
∴∠2=∠5=60°.
故答案为:60°.
【点睛】
本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键.
十三、填空题
13.15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°
解析:15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°,
∵2∠BFE+∠BFC=180°,
∴∠BFC=180°-2∠BFE=50°,
∴∠CFE=∠BFE-∠BFC=15°,
故答案为:15°.
【点睛】
本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE的度数是解题的关键.
十四、填空题
14.8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
十五、填空题
15.(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐
解析:(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐标为(4,0).
故答案为:(4,0).
【点睛】
本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
十六、填空题
16.(4,3)
【分析】
按照反弹规律依次画图即可.
【详解】
解:如图:
根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点
解析:(4,3)
【分析】
按照反弹规律依次画图即可.
【详解】
解:如图:
根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,
2021÷6=336…5,
即点P2021的坐标是(4,3).
故答案为:(4,3).
【点睛】
本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律.
十七、解答题
17.(1);(2)
【分析】
(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;
(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.
【详解】
解
解析:(1);(2)
【分析】
(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;
(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则.
十八、解答题
18.(1)x=±;(2)x=﹣2﹣π或x=﹣2+π
【分析】
(1)先移项,再将两边都除以25,再开平方即可求解;
(2)根据绝对值的性质即可求解.
【详解】
解:(1)25x2﹣36=0,
25x2=
解析:(1)x=±;(2)x=﹣2﹣π或x=﹣2+π
【分析】
(1)先移项,再将两边都除以25,再开平方即可求解;
(2)根据绝对值的性质即可求解.
【详解】
解:(1)25x2﹣36=0,
25x2=36,
x2=,
x=±;
(2)|x+2|=π,
x+2=±π,
x=﹣2﹣π或x=﹣2+π.
【点睛】
本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数.
十九、解答题
19.两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知
解析:两直线平行,同位角相等;;两直线平行,同旁内角互补.
【分析】
要证明与互补,需证明,可通过同位角与(或与相等来实现.
【详解】
证明:因为(已知),
所以 两直线平行,同位角相等).
又因为(已知),
所以,
即,
所以(同位角相等,两直线平行),
所以(两直线平行,同旁内角互补.
故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,解题的关键是掌握平行线的性质和判定.
二十、解答题
20.(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)△ABC的面积为11.
【分析】
(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位
解析:(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)△ABC的面积为11.
【分析】
(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位置写出各点坐标即可;
(2)根据图形的面积的和差求出△ABC的面积即可.
【详解】
解:如图所示,
、、;
.
【点睛】
本题考查了利用平移变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
二十一、解答题
21.26
【分析】
先估算出的范围,再求出x,y的值,即可解答.
【详解】
解:∵,
∴的整数部分是1,小数部分是
∴的整数部分是9,小数部分是,
∴x=9,y=,
∴=3×9+(-)2019=27+(
解析:26
【分析】
先估算出的范围,再求出x,y的值,即可解答.
【详解】
解:∵,
∴的整数部分是1,小数部分是
∴的整数部分是9,小数部分是,
∴x=9,y=,
∴=3×9+(-)2019=27+(-1)2019=27-1=26.
【点睛】
本题考查了估算无理数的大小,解决本题的关键是估算出的范围.
二十二、解答题
22.(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个
解析:(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.
【详解】
解:(1)设正方形边长为,则,由算术平方根的意义可知,
所以正方形的边长是.
(2)不同意.
因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,
所以,即两个正方形边长的和大于长方形的长,
所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.
【点睛】
本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.
二十三、解答题
23.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=
解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;
(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;
(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.
【详解】
解:(1)过作,
,
,
,,
,
,,
;
(2),理由如下:
如图3,过作交于,
,
,
,,
,,
又
;
(3)①当在延长线时(点不与点重合),;
理由:如图4,过作交于,
,
,
,,
,,
,
又,
;
②当在之间时(点不与点,重合),.
理由:如图5,过作交于,
,
,
,,
,,
,
又
.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
二十四、解答题
24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,
解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;
(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.
【详解】
解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,
∴∠BAN=180°×=72°,
故答案为:72;
(2)设A灯转动t秒,两灯的光束互相平行,
①当0<t<90时,如图1,
∵PQ∥MN,
∴∠PBD=∠BDA,
∵AC∥BD,
∴∠CAM=∠BDA,
∴∠CAM=∠PBD
∴2t=1•(30+t),
解得 t=30;
②当90<t<150时,如图2,
∵PQ∥MN,
∴∠PBD+∠BDA=180°,
∵AC∥BD,
∴∠CAN=∠BDA
∴∠PBD+∠CAN=180°
∴1•(30+t)+(2t-180)=180,
解得 t=110,
综上所述,当t=30秒或110秒时,两灯的光束互相平行;
(3)∠BAC和∠BCD关系不会变化.
理由:设灯A射线转动时间为t秒,
∵∠CAN=180°-2t,
∴∠BAC=72°-(180°-2t)=2t-108°,
又∵∠ABC=108°-t,
∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,
∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,
∴∠BAC:∠BCD=2:1,
即∠BAC=2∠BCD,
∴∠BAC和∠BCD关系不会变化.
【点睛】
本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
二十五、解答题
25.(1),证明见解析;(2)证明见解析;(3).
【分析】
(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;
(2)设CD与AE交于点H
解析:(1),证明见解析;(2)证明见解析;(3).
【分析】
(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;
(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;
(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.
【详解】
解:(1)∠AED=∠EAF+∠EDG.理由:如图1,
过E作EH∥AB,
∵AB∥CD,
∴AB∥CD∥EH,
∴∠EAF=∠AEH,∠EDG=∠DEH,
∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;
(2)证明:如图2,设CD与AE交于点H,
∵AB∥CD,
∴∠EAF=∠EHG,
∵∠EHG是△DEH的外角,
∴∠EHG=∠AED+∠EDG,
∴∠EAF=∠AED+∠EDG;
(3)∵AI平分∠BAE,
∴可设∠EAI=∠BAI=α,则∠BAE=2α,
如图3,∵AB∥CD,
∴∠CHE=∠BAE=2α,
∵∠AED=20°,∠I=30°,∠DKE=∠AKI,
∴∠EDI=α+30°-20°=α+10°,
又∵∠EDI:∠CDI=2:1,
∴∠CDI=∠EDK=α+5°,
∵∠CHE是△DEH的外角,
∴∠CHE=∠EDH+∠DEK, 即2α=α+5°+α+10°+20°,
解得α=70°,
∴∠EDK=70°+10°=80°,
∴△DEK中,∠EKD=180°-80°-20°=80°.
【点睛】
本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.
展开阅读全文