收藏 分销(赏)

人教版七年级下册数学期末试卷.doc

上传人:精**** 文档编号:1861174 上传时间:2024-05-10 格式:DOC 页数:24 大小:674.54KB
下载 相关 举报
人教版七年级下册数学期末试卷.doc_第1页
第1页 / 共24页
人教版七年级下册数学期末试卷.doc_第2页
第2页 / 共24页
人教版七年级下册数学期末试卷.doc_第3页
第3页 / 共24页
人教版七年级下册数学期末试卷.doc_第4页
第4页 / 共24页
人教版七年级下册数学期末试卷.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、人教版七年级下册数学期末试卷一、选择题1的平方根是()ABCD2下列各组图形,可经平移变换,由一个图形得到另一个图形的是( )ABCD3在平面直角坐标系中位于第二象限的点是( )ABCD4下列句子中,属于命题的是( )三角形的内角和等于180度;对顶角相等;过一点作已知直线的垂线;两点确定一条直线ABCD5如图,直线ABCD,AECE,1125,则C等于()A35B45C50D556若一个正数的两个平方根分别是2m+6和m18,则5m+7的立方根是( )A9B3C2D97如图,一条“U”型水管中AB/CD,若B=75,则C应该等于( )ABCD8如图,在平面直角坐标系中,根据这个规律,探究可得

2、点的坐标是( )ABCD九、填空题9已知=2.493, =7.882,则=_十、填空题10点(m,1)和点(2,n)关于x轴对称,则mn等于_.十一、填空题11已知,射线在同一平面内绕点O旋转,射线分别是和的角平分线则的度数为_十二、填空题12如图,直线ab,直线c与直线a,b分别交于点D,E,射线DF直线c,则图中与1互余的角有 _个 十三、填空题13如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=30,则EFC的度数为_十四、填空题14a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“

3、文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,以此类推,则a2020=_十五、填空题15在平面直角坐标系中,若点在第二象限,则的取值范围为_十六、填空题16如图,在平面直角坐标系中,边长为1的等边OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将OA1A2沿x轴正方向依次向右移动2个单位,依次得到A3A4A5,A6A7A8,则顶点A2021的坐标为 _十七、解答题17计算:(1)(2)十八、解答题18求下列各式中的:(1);(2);(3)十九、解答题19已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系(1)如图1,已知与中,与相交于点问:与有何关

4、系?请完成下面的推理过程理由:,结论:与关系是 (2)如图2,已知,则与有何关系?请直接写出你的结论(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 二十、解答题20如图,在平面直角坐标系中,已知三角形三点的坐标分别为,(1)求三角形的面积;(2)在轴上存在一点,使三角形的面积等于三角形面积,求点的坐标二十一、解答题21阅读下面的文字,解答问题 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,但是由于12,所以的整数部分为1,将减去其整数部分1,差就是小数部分为(1)解答下列问题: (1)的整数部分是 ,小数部分是 ;(2)如

5、果的小数部分为a,的整数部分为b,求a+b的值;(3)已知12+=x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:MCADCE;(3)如

6、图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数二十四、解答题24已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,点E、F均落在直线MN上(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题请你根据小丽的思考,写出解决这一问题的过程(2)将三角形DEF沿着NM的方向平移,如图2,求证:;(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则_(用含的代数式表示)二十五、解答题25在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图

7、1,点在线段上运动时,平分.若,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.【参考答案】一、选择题1D解析:D【分析】依据平方根的定义、算术平方根的定义进行解答即可【详解】解:,的平方根是;故选D.【点睛】本题主要考查的是算术平方根、平方根的定义,熟练掌握相关概念是解题的关键2B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于解析:B【分析】根据平移的性质,结合

8、图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于平移得到;C、图形由轴对称得到,不属于平移得到;D、图形的方向发生变化,不符合平移的性质,不属于平移得到;故选:B【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向注意结合图形解题的思想3B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B(-2,3)符合,故选:B【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点

9、,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可【详解】解: 三角形的内角和等于180,是三角形内角和定理,是命题;对顶角相等,是对顶角的性质,是命题;过一点作已知直线的垂线,是作图,不是命题;两点确定一条直线,是直线的性质,是命题,综上所述,属于命题是故选:B【点睛】此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断5A【分析】过点E作EFAB,则EFCD,利用“两直线平行,内错角相等”可得出BAEAEF及CCEF,结合A

10、EF+CEF90可得出BAE+C90,由邻补角互补可求出BAE的度数,进而可求出C的度数【详解】解:过点E作EFAB,则EFCD,如图所示EFAB,BAEAEFEFCD,CCEFAECE,AEC90,即AEF+CEF90,BAE+C901125,1+BAE180,BAE18012555,C905535故选:A【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键6B【分析】根据立方根与平方根的定义即可求出答案【详解】解:由题意可知:2m+6+m180,m4,5m+727,27的立方根是3,故选:B【点睛】考核知识点:平方根、立方根理解平方根、立方根的定义和性

11、质是关键7C【分析】直接根据平行线的性质即可得出结论【详解】解:ABCD,B=75,C=180-B=180-75=105故选:C【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键8B【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、n,纵坐标依次为2、0、2、0、四个一循环,进而求解即可【详解】解:观察图形可知,点的横坐标依次为1、2、3、解析:B【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、n,纵坐标依次为2、0、2、0、四个一循环,进而求解即可【详解】解:观察图形可知,点的横坐标依次为1、2、3、4、n,纵坐标依次为2、0

12、、2、0、四个一循环,且20214=5051,点的坐标是(2021,2),故选:B【点睛】本题考查点坐标规律探究,找到点的坐标变换规律是解答的关键九、填空题993 【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开解析:93 【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立

13、方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.十、填空题10-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案【详解】点A(m,1)和点B(2,n)关于x轴对称,m2,n-1,故mn2故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案【详解】点A(m,1)和点B(2,n)关于x轴对称,m2,n-1,故mn2故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键十一、填空题1150【分析】分射线OC在AOB的内部和射线OC在AO

14、B的外部,分别画出图形,结合根据角平分线定义求解【详解】解:若射线OC在AOB的内部,OE,OF分别是AOC和COB的解析:50【分析】分射线OC在AOB的内部和射线OC在AOB的外部,分别画出图形,结合根据角平分线定义求解【详解】解:若射线OC在AOB的内部,OE,OF分别是AOC和COB的角平分线,EOC=AOC,FOC=BOC,EOF=EOC+FOC=AOC+BOC=50;若射线OC在AOB的外部,射线OE,OF只有1个在AOB外面,如图,EOF=FOC-COE=BOC-AOC=(BOC-AOC)=AOB=50;射线OE,OF都在AOB外面,如图,EOF=EOC+COF=AOC+BOC=

15、(AOC+BOC)=(360-AOB)=130;综上:EOF的度数为50或130,故答案为:50或130【点睛】本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键注意分类思想的运用十二、填空题124【分析】根据射线DF直线c,可得与1互余的角有2,3,根据ab,可得与1互余的角有4,5,可得图中与1互余的角有4个【详解】射线DF直线c1+2=90,1解析:4【分析】根据射线DF直线c,可得与1互余的角有2,3,根据ab,可得与1互余的角有4,5,可得图中与1互余的角有4个【详解】射线DF直线c1+2=90,1+3=90

16、即与1互余的角有2,3又ab3=5,2=41互余的角有4,5与1互余的角有4个故答案为:4【点睛】本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等十三、填空题13120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而解析:120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知

17、BEF=DEF,而AEB的度数可在RtABE中求得,由此可求出BEF的度数,即可得解【详解】解:RtABE中,ABE=30,AEB=60;由折叠的性质知:BEF=DEF;而BED=180-AEB=120,BEF=60;由折叠的性质知:EBC=D=BCF=C=90,BECF,EFC=180-BEF=120故答案为:120【点睛】本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变十四、填空题14【分析】先根据题意求得、,发现规律即可求解【详解】解:a1=3,该数列为每4个数为一周期循环,a2020=故答案为

18、:【点睛】此题主要考查规律的探索,解析:【分析】先根据题意求得、,发现规律即可求解【详解】解:a1=3,该数列为每4个数为一周期循环,a2020=故答案为:【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律十五、填空题15-1a3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可【详解】解:点P(a-3,a+1)在第二象限,解不等式得,a3,解不等式得,a解析:-1a3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可【详解】解:点P(a-3,a+1)在第二象限,解不等式得,a3,解不等式得,a-1,-1a3故答案为:-1a3【

19、点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)十六、填空题16(1346.5,)【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标【详解】解:是等边三角形,边长为1,观察图形可知,3个点一个循解析:(1346.5,)【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标【详解】解:是等边三角形,边长为1,观察图形可知,3个点一个循环,每个循环向右移动2个单位20

20、2136731,67321346,故顶点A2021的坐标是(1346.5,)故答案为:(1346.5,)【点睛】本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键十七、解答题17(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键解析:(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时

21、除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1解析:(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1),;(2),;(3),或,解得:或【点睛】本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键十九、解答题19(1)180;两直线平行,同旁内角互补;两直线平行,同位角相等;180;互补;(2)(相等);(3)这两个角相等或互补【分析】(1)如图1,根据,即可得与的关系;

22、(2)如图2,根据解析:(1)180;两直线平行,同旁内角互补;两直线平行,同位角相等;180;互补;(2)(相等);(3)这两个角相等或互补【分析】(1)如图1,根据,即可得与的关系;(2)如图2,根据,即可得与的关系;(3)由(1)(2)即可得出结论【详解】解:(1)理由:,(两直线平行,同旁内角互补), (两直线平行,同位角相等),结论:与关系是互补故答案为:;两直线平行,同旁内角互补;两直线平行,同位角相等;相等(2),理由如下:,(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等【点睛】本题考查了平行线

23、的性质,解题的关键是熟练掌握平行线的性质定理二十、解答题20(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解【详解】解:(1)由图象可解析:(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解【详解】解:(1)由图象可得:;(2)设点,由题意得:,的面积以点B的纵坐标为高,ON为底,即,或【点睛】本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题的关键二十一、解答

24、题21(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解【详解】解:(1)解析:(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解【详解】解:(1)的整数部分是3,小数部分是3;(2)23,34a=2,b=3a+b=2+3=1;(3)12,1312+14,x=13,y=1xy=13(1)=14xy的相反数是14【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数部分

25、和小数部分是解题的关键二十二、解答题22(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cma2=400又a0a=20又要裁出的长方形面积为300cm2若以原正方形纸片的边长为长方形的长,则长方形的宽为:30020=15(cm)可以以正方形一边为长方形的长,在其邻边

26、上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)长方形纸片的长宽之比为3:2设长方形纸片的长为3xcm,则宽为2xcm6x 2=300x 2=50又x0x =长方形纸片的长为又202即:20小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得

27、解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+F

28、AC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+ABF+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键二十四、解答题24(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先

29、证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到D解析:(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到DEF=ECA=,进而得到,根据三角形内角和即可求解【详解】解:(1)过点C作, , ,; (2)解:,又,;(3)如图三角形DEF即为所求作三角形 ,由(2)得,DEAC,DEF=ECA=,ACB=, ,A=180-=故答案为为:【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键二十

30、五、解答题25(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;即可得FDM +FMD=EDG +G

31、AC=C+BAC=(BAC+C)=140=70;再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/AC,根据平行线的性质可得EDB=C,FMD

32、=GAC;即可得到FDM=NDE=C,所以FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;再由三角形外角的性质可得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AFD=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C

33、)=140=70;AFD=180-(FDM +FMD)=180-70=110;故答案为115,110;AFD=90+B,理由如下:AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;AFD=180-(FDM +FMD)=180-(90-B)=90+B;(2)AFD=90-B,理由如下:如图,射线ED交AG于点M,AG平分BAC,DF平分EDB,CAG=BAC,NDE=EDB,FDM=NDE=EDB,DE/AC,EDB=C,FMD=GAC;FDM=NDE=C,FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;AFD=FDM +FMD=90-B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服