资源描述
2024年人教版四4年级下册数学期末解答质量检测试卷(附答案)
1.妈妈买回来一些毛线用来织毛衣和手套,织毛衣用去千克,比织手套多用去千克。妈妈买回的毛线一共有多少千克?
2.妈妈买了一些毛线,给爸爸织毛衣用去了,给小红织手套用去了,妈妈还剩多少毛线?
3.一节体育课有小时,做准备活动用了小时,老师的示范讲解用了小时,其余时间学生自由活动。学生自由活动的时间是多少小时?
4.修路队修一条公路,第一周修了千米,第二周修了千米,第三周比前两周修的总和少千米,第三周修了多少千米?
5.为了大力弘扬中华民族扶危济困的传统美德。学校举行为希望小学捐书的活动,四、五年级学生共捐书670本,其中五年级学生捐书的本数比四年级的1.2倍多10本。四、五年级学生各捐书多少本?(用方程解答)
6.两支修路队共同修一条长880m的路,分别从两端同时相向施工,5天完成。第二队的修路速度是第一队的1.2倍,两支修路队每天各修多少米?
7.刘老师的年龄是小明的3倍,小明比刘老师小22岁,小明和刘老师各多少岁?
8.一辆双层巴士共有乘客57人,下层乘客人数是上层乘客人数的2倍,上、下两层各有乘客多少人?
9.如图,一堆钢管堆成梯形,最下面一层有8根,最上面一层有2根,共有7层。你能联系梯形面积公式计算出钢管有多少根吗?
10.花店挑选了15朵红花、25朵黄花搭配花篮,每篮两种花朵数分别相同,要使这些花刚好分完。最多可以配多少篮?每篮至少有多少朵花?
11.李小明家卫生间的地面是一个长300厘米,宽240厘米的长方形,如果给卫生间的地面铺上地砖,选择下面哪种规格的地砖能正好铺满?请简要说明理由。
12.明明准备用若干张长15厘米、宽12厘米的长方形纸片拼成一个正方形,拼成的正方形的边长最少是多少厘米?拼成这个正方形需要多少张这样的长方形纸片?
13.列方程解答下面各题,并完成表格。
阳光小学五年级常用的家校联系途径及人数统计表
联系途径
微信
钉钉
QQ
人数
72
36
(1)微信联系中,一般采用文字沟通或语音通话,文字沟通人数是语音通话人数的2倍,微信联系中采用文字沟通、语音通话的各有多少人?
(2)采用QQ联系的人数比采用钉钉联系的2倍多4人,采用钉钉联系的有多少人?
14.水果店从批发市场购进30箱芒果和20箱荔枝,一共用去3240元。每箱芒果56元,每箱荔枝多少元?(用方程解答)
15.一号和二号两个仓库一共有粮食704吨,一号仓库里的粮食是二号仓库的1.2倍,两个仓库各有粮食多少吨?
16.甲、乙两个修路队共同修一条公路,15天后,甲队比乙队少修120米,甲队每天修65米,乙队每天修多少米?(用方程解)
17.甲、乙两地相距310km,两车同时从甲、乙两地相对开出,2.5小时后相距85km,已知甲车每小时行46km,乙车每小时行多少千米?(两车未相遇)
18.甲、乙两辆汽车同时从A、B两地相向开出,经过几小时相遇?
19.甲、乙两艘轮船同时从A、B两地相向而行。经过3.5小时相遇。相遇后甲船继续行2.5小时到达B地。乙船每小时行50km,甲船每小时行多少千米?
20.甲、乙两地相距1800米,番薯和玉米两人同时从甲、乙两地相向而行,经过20分钟相遇,若番薯的速度比玉米每分钟慢18米,求番薯和玉米的速度?
21.一个圆形花坛的直径是8米,在它的周围加宽2米,花坛的面积比原来增加多少平方米?
22.在一座直径为40米的圆形假山周围铺一条4米宽的小路,这条小路的面积是多少平方米?沿这条小路的外边缘每隔3.14米装一盏路灯,一共要装多少盏路灯?
23.张大伯家有一块菜地,由一个正方形和一个半圆形组成(如下图)。现计划在半圆形内种植南瓜,在正方形内种植西红柿。
(1)种植南瓜的面积有多少平方米?
(2)在这块菜地的外围装一圈栅栏,至少需要准备多长的栅栏?
24.宋夹城体育公园有一个圆形水塘。王大妈每天绕水塘走10圈,刚好走了502.4米。为配合创建森林城市,公园在水塘一周修了一个环形花圃,现在王大妈绕着花圃走8圈就和以前走得一样多了。
(1)水塘的半径是多少米?
(2)环形花圃有多宽?
(3)环形花圃的面积是多少平方米?
25.为了参加学校运动会的1分钟跳绳比赛,冬冬和平平提前10天进行训练,每天测试成绩如图:
(1)他们两人第1天的成绩相差( )个,第10天的成绩相差( )个。
(2)第( )天到第( )天平平的成绩进步最快。
(3)你认为通过10天训练,谁的进步大一些?
26.下面是某服装超市2021年上半年毛衣和衬衫的销售情况统计表。
月份
1月
2月
3月
4月
5月
6月
毛衣/件
190
170
60
60
40
20
衬衫/件
80
100
140
170
180
200
(1)根据表中数据,完成复式折线统计图。
某服装超市2021年上半年毛衣和衬衫销售情况统计图
(2)( )月份毛衣销售的最多,( )月份衬衫销售的最多。
(3)衬衫销售情况呈什么变化趋势?
27.下面是快乐超市甲、乙两种饮料一至六月销售情况统计表:
根据表中的数据,画出折线统计图,并回答下面的问题。
(1)根据统计表中的数据,画出折线统计图。
(2)( )月份两种饮料的销售量相差最大,相差( )箱。
(3)你建议超市老板下半年进哪种饮料多一些?为什么?
28.下面是万家乐超市甲、乙两个分店去年四个季度的销售额统计图,请你看图回答问题。
(1)甲店( )季度销售额最高,乙店( )季度销售额最低。
(2)甲乙两店第四季度销售额相差( )万元。
(3)甲、乙两个分店平均每个季度的销售额各是多少万元?
1.千克
【分析】
织毛衣用去的千克数-千克求出织手套用去的千克数,再加上织毛衣用去的千克数即可求出妈妈买回的毛线一共有多少千克。
【详解】
-+
=+
=(千克)
答:妈妈买回的毛线一共有千克。
【点
解析:千克
【分析】
织毛衣用去的千克数-千克求出织手套用去的千克数,再加上织毛衣用去的千克数即可求出妈妈买回的毛线一共有多少千克。
【详解】
-+
=+
=(千克)
答:妈妈买回的毛线一共有千克。
【点睛】
异分母的分数相加减,先通分,然后再加减。
2.【分析】
将这些毛钱看作单位1,用单位1减去给爸爸和小红织东西用去的,得到还剩几分之几的毛钱即可。
【详解】
=
=
答:妈妈还剩下的毛钱。
【点睛】
本题考查了分数减法的应用,正确理解题意并列
解析:
【分析】
将这些毛钱看作单位1,用单位1减去给爸爸和小红织东西用去的,得到还剩几分之几的毛钱即可。
【详解】
=
=
答:妈妈还剩下的毛钱。
【点睛】
本题考查了分数减法的应用,正确理解题意并列式即可。
3.小时
【分析】
用体育课的时间减去准备活动用的时间,再减去示范讲解用的时间,就是自由活动时间;据此解答。
【详解】
(小时)
答:学生自由活动的时间是小时。
【点睛】
本题主要考查分数连减的简单应用
解析:小时
【分析】
用体育课的时间减去准备活动用的时间,再减去示范讲解用的时间,就是自由活动时间;据此解答。
【详解】
(小时)
答:学生自由活动的时间是小时。
【点睛】
本题主要考查分数连减的简单应用。
4.千米
【分析】
由题意可知,用第一周修的路程+第二周修的路程-千米=第三周修的路程,据此可解答。
【详解】
+-
=
=-
=
=(千米)
答:第三周修了千米。
【点睛】
本题考查分数的加减法,注意
解析:千米
【分析】
由题意可知,用第一周修的路程+第二周修的路程-千米=第三周修的路程,据此可解答。
【详解】
+-
=
=-
=
=(千米)
答:第三周修了千米。
【点睛】
本题考查分数的加减法,注意异分母分数加减法要先通分再计算。
5.300本;370本
【分析】
设四年级捐书x本,则五年级捐书1.2x+10本,根据四年级捐的本数+五年级捐的本数=共捐的本数,列出方程求出x的值,是四年级捐的本数,总本数-四年级捐的本数=五年级捐的
解析:300本;370本
【分析】
设四年级捐书x本,则五年级捐书1.2x+10本,根据四年级捐的本数+五年级捐的本数=共捐的本数,列出方程求出x的值,是四年级捐的本数,总本数-四年级捐的本数=五年级捐的本数。
【详解】
解:设四年级捐书x本,则五年级捐书1.2x+10本。
x+1.2x+10=670
2.2x+10-10=670-10
2.2x÷2.2=660÷2.2
x=300
670-300=370(本)
答:四、五年级学生各捐书300本、370本。
【点睛】
用方程解决问题的关键是找到等量关系。
6.第一队80米;第二队96米
【分析】
等量关系式:(第一队的工作效率+第二队的工作效率)×工作时间=工作总量,据此列方程解答。
【详解】
解:设第一队每天修x米,则第二队每天修1.2x米。
(x+1
解析:第一队80米;第二队96米
【分析】
等量关系式:(第一队的工作效率+第二队的工作效率)×工作时间=工作总量,据此列方程解答。
【详解】
解:设第一队每天修x米,则第二队每天修1.2x米。
(x+1.2x)×5=880
2.2x×5=880
11x=880
11x÷11=880÷11
x=80
第二队:80×1.2=96(米)
答:第一队每天修80米,第二队每天修96米。
【点睛】
掌握工程问题中的数量关系是解答题目的关键。
7.小明11岁,刘老师33岁
【分析】
设小明的年龄是x岁,则刘老师的年龄是3x岁,根据刘老师年龄-小明年龄=22岁,列出方程求出x的值是小明年龄,小明年龄×3=刘老师年龄。
【详解】
解:设小明的年龄
解析:小明11岁,刘老师33岁
【分析】
设小明的年龄是x岁,则刘老师的年龄是3x岁,根据刘老师年龄-小明年龄=22岁,列出方程求出x的值是小明年龄,小明年龄×3=刘老师年龄。
【详解】
解:设小明的年龄是x岁。
3x-x=22
2x÷2=22÷2
x=11
11×3=33(岁)
答:小明11岁,刘老师33岁。
【点睛】
用方程解决问题的关键是找到等量关系。
8.上层19人;下层38人
【分析】
设上层乘客有x人,则下层有2x人,上层人数+下层人数=总人数,据此列方程解答。
【详解】
解:设上层乘客有x人,则下层有2x人。
x+2x=57
3x=57
x=1
解析:上层19人;下层38人
【分析】
设上层乘客有x人,则下层有2x人,上层人数+下层人数=总人数,据此列方程解答。
【详解】
解:设上层乘客有x人,则下层有2x人。
x+2x=57
3x=57
x=19
2x=19×2=38
答:上层有19人,下层有38人。
【点睛】
此题考查了列方程解决实际问题,分别表示出上层、下层的人数是解题关键。
9.35根
【分析】
根据观察图形可知,此图形为梯形,上底为2,下底为8,高是7,根据梯形面积公式:(上底+下底)×高÷2,即可解答。
【详解】
(2+8)×7÷2
=10×7÷2
=35(根)
答:钢
解析:35根
【分析】
根据观察图形可知,此图形为梯形,上底为2,下底为8,高是7,根据梯形面积公式:(上底+下底)×高÷2,即可解答。
【详解】
(2+8)×7÷2
=10×7÷2
=35(根)
答:钢管有35根。
【点睛】
此题主要考查了学生对梯形面积公式的实际应用能力。
10.5篮,8朵
【分析】
求15和25的最大公因数,15=5×3,25=5×5,15和25的最大公因数是5,就是最多可以配5篮,此时每篮里朵数最少,红花3朵,黄花5朵,一共3+5=8(朵)。
【详解】
解析:5篮,8朵
【分析】
求15和25的最大公因数,15=5×3,25=5×5,15和25的最大公因数是5,就是最多可以配5篮,此时每篮里朵数最少,红花3朵,黄花5朵,一共3+5=8(朵)。
【详解】
15=5×3
25=5×5
15和25的最大公因数是5,
15÷5+25÷5
=3+5
=8(朵)
答:最多可以配5篮,每篮至少有8朵花。
【点睛】
此题是有关求最大公因数的应用题,关键是要理解15朵红花、25朵黄花的最大公因数就是最多配的篮数。
11.边长60cm的地砖正好铺满,理由见解析。
【分析】
根据题意可以计算出卫生间的总面积,除以地砖面积,没有余数说明正好铺满,有余数说明不能正好铺满。
【详解】
300×240=72000(平方厘米)
解析:边长60cm的地砖正好铺满,理由见解析。
【分析】
根据题意可以计算出卫生间的总面积,除以地砖面积,没有余数说明正好铺满,有余数说明不能正好铺满。
【详解】
300×240=72000(平方厘米)
50×50=2500(平方厘米),72000÷2500=28(块)……2000(平方厘米),有余数,不能正好铺满;
60×60=3600(平方厘米),72000÷3600=20(块),没有余数,能正好铺满;
答:边长60cm的地砖正好铺满。需要用20块。
【点睛】
此题还可以从另一个角度思考:装好铺满,说明地砖的边长是300和240的公因数;据此可以推断正好铺满的是边长60厘米的地砖。
12.60厘米;20块
【分析】
把长15厘米,宽12厘米的长方形纸,拼成一个正方形。求正方形的边长是多少厘米,就是求长15和宽12的最小公倍数是60;要求至少需多少张,用最小公倍数即边长60,横着放,一
解析:60厘米;20块
【分析】
把长15厘米,宽12厘米的长方形纸,拼成一个正方形。求正方形的边长是多少厘米,就是求长15和宽12的最小公倍数是60;要求至少需多少张,用最小公倍数即边长60,横着放,一行放60÷15=4块,一列为60÷12=5块,所以最后就断定是4×5=20块.据此解答。
【详解】
15=3×5
12=2×2×3
所以15和12的最小公倍数是:2×2×3×5=60,
答:正方形的边长最小是60厘米。
(60÷15)×(60÷12)
=4×5
=20(张)
答:至少需要20张这样的长方形纸。
【点睛】
本题考查了最小公倍数在生活中的实际应用。长方形拼正方形,求正方形最小边长就是求长方形长、宽的最小公倍数。
13.(1)48人;24人
(2)16人
表格见详解
【分析】
(1)根据文字沟通人数是语音通话人数的2倍,把语音通话人数设为x人,那么文字沟通人数为2x人,用“文字沟通人数+语音通话人数=72”列方程;
解析:(1)48人;24人
(2)16人
表格见详解
【分析】
(1)根据文字沟通人数是语音通话人数的2倍,把语音通话人数设为x人,那么文字沟通人数为2x人,用“文字沟通人数+语音通话人数=72”列方程;
(2)根据采用QQ联系的人数比采用钉钉联系的2倍多4人,数量关系为:QQ联系的人数=采用钉钉联系的2倍+4,列方程。
【详解】
(1)解:设语音沟通的有x人。
2x+x=72
x=24
文字沟通人数:24×2=48(人)
答:微信联系中采用文字沟通48人,语音通话的有24人。
(2)解:设采用钉钉联系的有x人。
2x+4=36
x=16
答:采用钉钉联系的有16人。
联系途径
微信
钉钉
QQ
人数
72
16
36
【点睛】
14.78元
【分析】
设每箱荔枝为x元,20箱荔枝一共是20x元,芒果一箱56元,30箱芒果一共是30×56元,购进荔枝和芒果共用去3240元,就是进荔枝的钱数+进芒果的钱数=3240元,即:20x+5
解析:78元
【分析】
设每箱荔枝为x元,20箱荔枝一共是20x元,芒果一箱56元,30箱芒果一共是30×56元,购进荔枝和芒果共用去3240元,就是进荔枝的钱数+进芒果的钱数=3240元,即:20x+56×30=3240,解方程,即可解答。
【详解】
解:设每箱荔枝x元
20x+56×30=3240
20x+1680=3240
20x=3240-1680
20x=1560
x=1560÷20
x=78
答:每箱荔枝78元。
【点睛】
根据已知条件,找出相关的量,列方程,解方程。
15.一号仓库:384吨;二号仓库:320吨
【分析】
设二号仓库的粮食有x吨,则一号仓库里的粮食有1.2x吨,根据“一号和二号两个仓库一共有粮食704吨”列出方程求解即可。
【详解】
解:设二号仓库的粮
解析:一号仓库:384吨;二号仓库:320吨
【分析】
设二号仓库的粮食有x吨,则一号仓库里的粮食有1.2x吨,根据“一号和二号两个仓库一共有粮食704吨”列出方程求解即可。
【详解】
解:设二号仓库的粮食有x吨,则一号仓库里的粮食有1.2x吨。
1.2x+x=7.4
2.2x=704
x=320
320×1.2=384(吨)
答:一号仓库里的粮食有384吨,二号仓库的粮食有320吨。
【点睛】
本题主要考查列方程解含有两个未知数的问题,找出等量关系式是解题的关键。
16.73米
【分析】
设乙队每天修x米,等量关系为:甲队、乙队每天修路的差×天数=120米,据此列方程解答。
【详解】
解:设乙队每天修x米。
(x-65)×15=120
x-65=8
x=73
答:乙
解析:73米
【分析】
设乙队每天修x米,等量关系为:甲队、乙队每天修路的差×天数=120米,据此列方程解答。
【详解】
解:设乙队每天修x米。
(x-65)×15=120
x-65=8
x=73
答:乙队每天修73米。
【点睛】
列方程是解答应用题的一种有效的方法,解题的关键是弄清题意,找出应用题中的等量关系。
17.44千米
【分析】
两车行驶的总路程为(310-85)千米,根据相遇时间计算公式求出两车的速度和,乙车的速度=甲乙两车的速度和-甲车的速度。
【详解】
(310-85)÷2.5-46
=225÷2.
解析:44千米
【分析】
两车行驶的总路程为(310-85)千米,根据相遇时间计算公式求出两车的速度和,乙车的速度=甲乙两车的速度和-甲车的速度。
【详解】
(310-85)÷2.5-46
=225÷2.5-46
=90-46
=44(千米)
答:乙车每小时行44千米。
【点睛】
在相遇问题中,相遇时间=总路程÷速度和,速度和=总路程÷相遇时间。
18.8小时
【分析】
等量关系式:(甲车速度+乙车速度)×相遇时间=总路程,据此解答。
【详解】
解:设经过x小时相遇。
(65+45)x=880
110x=880
x=880÷110
x=8
答:经过
解析:8小时
【分析】
等量关系式:(甲车速度+乙车速度)×相遇时间=总路程,据此解答。
【详解】
解:设经过x小时相遇。
(65+45)x=880
110x=880
x=880÷110
x=8
答:经过8小时相遇。
【点睛】
找出等量关系式是用方程解答本题的关键。
19.70km
【分析】
由题意可知:甲、乙两艘轮船同时从A、B两地相向而行。经过3.5小时相遇,乙船每小时行50km,用乙船的速度乘3.5小时即可求出乙船的走了路程,相遇后甲船继续行2.5小时到达B地,
解析:70km
【分析】
由题意可知:甲、乙两艘轮船同时从A、B两地相向而行。经过3.5小时相遇,乙船每小时行50km,用乙船的速度乘3.5小时即可求出乙船的走了路程,相遇后甲船继续行2.5小时到达B地,此时甲船走的路程即是乙船的路程,根据速度=路程÷速度即可求出甲的速度。
【详解】
50×3.5÷2.5
=175÷2.5
=70(千米)
答:甲船每小时行70千米。
【点睛】
完成本题的关健是根据:速度×时间=路程这一基本关系式列出等量关系式。
20.36米/分;54米/分
【分析】
此题是相遇问题。路程÷时间=速度和再根据和差问题来解决即可。
【详解】
1800÷20=90(米/分)
(90-18)÷2
=72÷2
=36(米/分)
90-36
解析:36米/分;54米/分
【分析】
此题是相遇问题。路程÷时间=速度和再根据和差问题来解决即可。
【详解】
1800÷20=90(米/分)
(90-18)÷2
=72÷2
=36(米/分)
90-36=54(米/分)
答:番薯和玉米的速度分别是36米/分、54米/分。
【点睛】
本题主要考查学生依据速度,时间以及路程之间数量关系解决问题的能力。
21.8平方米
【详解】
8+2+2=12(米)
(62-42)π=62.8(平方米)
解析:8平方米
【详解】
8+2+2=12(米)
(62-42)π=62.8(平方米)
22.64平方米;48盏
【分析】
(1)分别求出大圆的半径与小圆的半径,然后利用圆环的面积公式=π(R-r),即可解答;(2)此题是在封闭路线上装路灯,则间隔数=装路灯的数量,先根据圆的周长公式求出小路
解析:64平方米;48盏
【分析】
(1)分别求出大圆的半径与小圆的半径,然后利用圆环的面积公式=π(R-r),即可解答;(2)此题是在封闭路线上装路灯,则间隔数=装路灯的数量,先根据圆的周长公式求出小路的周长,再用周长除以间距3.14米,据此解答即可。
【详解】
40÷2=20(米),20+4=24(米)
3.14×(24-20)
=3.14×176
=552.64(平方米)
3.14×24×2÷3.14
=150.72÷3.14
=48(盏)
答:这条小路的面积是552.64平方米,一共要装48盏路灯。
【点睛】
(1)此题考查了圆环的面积公式的灵活应用,这里的关键是把实际问题转化成数学问题,并找到对应的数量关系;(2)此题考查了植树问题的基本应用,要注意如果是两端都植树,那么间隔数=树的棵树-1,;若果两端都不植树,则间隔数=树的棵树+1。
23.(1)25.12平方米;(2)36.56米
【分析】
(1)求种植南瓜的面积,就是求直径为8米的半圆的面积;
(2)这块菜地外围栅栏的长度,等于正方形三个边长加上直径为8米的圆周长的一半。
【详解】
解析:(1)25.12平方米;(2)36.56米
【分析】
(1)求种植南瓜的面积,就是求直径为8米的半圆的面积;
(2)这块菜地外围栅栏的长度,等于正方形三个边长加上直径为8米的圆周长的一半。
【详解】
(1)3.14×(8÷2)2÷2
=3.14×16÷2
=25.12(平方米)
答:种植南瓜的面积有25.12平方米。
(2)8×3+3.14×8÷2
=24+12.56
=36.56(米)
答:至少需要准备36.56米长的栅栏。
【点睛】
考查了圆的周长、面积公式的熟练运用,掌握公式是关键。
24.(1)8米;(2)2米;(3)113.04平方米
【分析】
(1)王大妈走10圈,刚好走了502.4米,502.4÷10即可求一圈的周长,再通过圆的周长公式可得到半径;(2)用502.4÷8得到一圈
解析:(1)8米;(2)2米;(3)113.04平方米
【分析】
(1)王大妈走10圈,刚好走了502.4米,502.4÷10即可求一圈的周长,再通过圆的周长公式可得到半径;(2)用502.4÷8得到一圈的周长,再利用圆的周长公式可得到大圆的半径,再用大圆的半径减去小圆的半径即可求解;(3)利用环形面积=π×(R²-r²)即可求解。
【详解】
(1)502.4÷10÷3.14÷2
=50.24÷3.14÷2
=16÷2
=8(米);
(2)502.4÷8÷3.14÷2
=62.8÷3.14÷2
=20÷2
=10(米)
10-8=2(米);
(3)3.14×(10²-8²)
=3.14×(100-64)
=3.14×36
=113.04(平方米)
答:水塘的半径是8米,环形的花圃有2米宽,环形的花圃面积是113.04平方米。
【点睛】
此题需熟记圆的周长和圆的面积以及环形面积公式才是解题的关键。
25.(1)1;2
(2)6;7
(3)见详解
【分析】
(1)用第1天两个人跳的个数相减即可;用第10天两人跳的个数相减即可;
(2)通过统计图观察,找出两天成绩相差的最多(或者直线越趋近于竖直),即进
解析:(1)1;2
(2)6;7
(3)见详解
【分析】
(1)用第1天两个人跳的个数相减即可;用第10天两人跳的个数相减即可;
(2)通过统计图观察,找出两天成绩相差的最多(或者直线越趋近于竖直),即进步的最快。
(3)两个人的成绩都呈上升趋势,通过统计图观察谁上升的趋势比较明显即可,(说法合理即可)
【详解】
(1)第1天:153-152=1(个)
第10天:167-165=2(个)
(2)通过折线统计图观察,可以知道第6天到第7天平平的成绩进步最快。
(3)我认为平平进步的快。
因为平平的成绩只有第4天到第5天降低,其他时候都是提升状态。(答案合理即可)
【点睛】
本题主要考查复式折线统计图的分析,学会分析统计图的数据并灵活运用。
26.(1)见详解
(2)1;6
(3)上升趋势
【分析】
(1)折线统计图的绘制方法:根据图纸的大小,确定纵轴和横轴每一个单位的长度;根据纵轴、横轴的单位长度,画出纵轴和横轴,并画出方格图;根据各数量的
解析:(1)见详解
(2)1;6
(3)上升趋势
【分析】
(1)折线统计图的绘制方法:根据图纸的大小,确定纵轴和横轴每一个单位的长度;根据纵轴、横轴的单位长度,画出纵轴和横轴,并画出方格图;根据各数量的多少,在方格图的纵线或横线(或纵、横的交点)上描出表示数量多少的点;把各点用线段顺次连接起来;写出标题,注明单位,可以写明调查日期或制图日期。复式折线统计图还要画出图例。
(2)观察统计图,数据位置越高销量越多。
(3)观察统计图,折线往上表示上升趋势,折线往下表示下降趋势。
【详解】
(1)某服装超市2021年上半年毛衣和衬衫销售情况统计图
(2)1月份毛衣销售的最多,6月份衬衫销售的最多。
(3)衬衫销售呈现上升趋势。
【点睛】
折线统计图不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况。复式折线统计图表示2个及以上的量的增减变化情况。
27.(1)见详解
(2)一;22
(3)超市老板下半年进乙种饮料多一些,因为乙饮料的销量呈上升趋势,而甲饮料的销量呈下降趋势。
【分析】
绘制折线统计图:描点、连线、标数据;观察折线统计图,找到两种饮料
解析:(1)见详解
(2)一;22
(3)超市老板下半年进乙种饮料多一些,因为乙饮料的销量呈上升趋势,而甲饮料的销量呈下降趋势。
【分析】
绘制折线统计图:描点、连线、标数据;观察折线统计图,找到两种饮料销售量相差最大,再把数据相减即可。
【详解】
(1)如图所示
(2)一月份两种饮料的销售量相差最大,相差22箱。
(3)超市老板下半年进乙种饮料多一些,因为乙饮料的销量呈上升趋势,而甲饮料的销量呈下降趋势。
【点睛】
本题考查折线统计图,解答本题的关键是掌握折线统计图的特征。
28.(1)一;二
(2)150
(3)562.5万元;592.5万元
【分析】
(1)观察统计图,数据点位置越高表示销售额越高,数据点位置越低表示销售额越低;
(2)找到第四季度甲乙两店销售额,求差即可
解析:(1)一;二
(2)150
(3)562.5万元;592.5万元
【分析】
(1)观察统计图,数据点位置越高表示销售额越高,数据点位置越低表示销售额越低;
(2)找到第四季度甲乙两店销售额,求差即可;
(3)根据平均数=总数÷份数,列式解答即可。
【详解】
(1)甲店一季度销售额最高,乙店二季度销售额最低。
(2)750-600=150(万元)
(3)(700+500+450+600)÷4
=2250÷4
=562.5(万元)
(620+430+570+750)÷4
=2370÷4
=592.5(万元)
答:甲、乙两个分店平均每个季度的销售额各是562.5万元,592.5万元。
【点睛】
折线统计图的特点不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况。复式折线统计图表示2个及以上的量的增减变化情况。
展开阅读全文