资源描述
2024年人教版七7年级下册数学期末试卷含答案
一、选择题
1.如图,∠1和∠2是同位角的是( )
A. B. C. D.
2.下列车标图案,可以看成由图形的平移得到的是( )
A. B. C. D.
3.下列各点中,在第二象限的是( )
A. B. C. D.
4.给出下列命题:①等边三角形是等腰三角形;②三角形的重心是三角形三条中线的交点;③三角形的外角等于两个内角的和;④三角形的角平分线是射线;⑤三角形相邻两边组成的角叫三角形的内角;⑥三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外.其中正确命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于( )
A.30° B.25° C.35° D.40°
6.下列运算中:①;②;③;④,错误的个数有( )
A.1个 B.2个 C.3个 D.4个
7.珠江流域某江段江水流向经过B、C、D三点,拐弯后与原来方向相同.如图,若∠ABC=120°,∠BCD=80°,则∠CDE等于( )
A.20° B.40° C.60° D.80°
8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点(1,0)、(2,0)、(2,1)(1,1)、(1,2)、(2,2)..根据这个规律,第2021个点的坐标为( )
A.(45,4) B.(45,9) C.(45,21) D.(45,0)
九、填空题
9.36的平方根是______,81的算术平方根是______.
十、填空题
10.在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.
十一、填空题
11.如图,已知OB、OC为△ABC的角平分线,DE∥BC交AB、AC于D、E,△ADE的周长为12,BC长为5,则△ABC的周长__.
十二、填空题
12.将一副直角三角板如图放置(其中,),点在上,,则的度数是______.
十三、填空题
13.如图,在△ABC中,将∠B、∠C按如图所示的方式折叠,点B、C均落于边BC上的点Q处,MN、EF为折痕,若∠A=82°,则∠MQE= _________
十四、填空题
14.规定,,例如:,,通过观察,那么______.
十五、填空题
15.平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若△PAB的面积为18,则m,n满足的数量关系式为________.
十六、填空题
16.如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,…,依此规律跳动下去,点的第2020次跳动至点的坐标是_______.
十七、解答题
17.(1)-+; (2),求.
十八、解答题
18.求下列各式中的值.
(1)
(2)
十九、解答题
19.阅读下列推理过程,在括号中填写理由.
已知:如图,点、分别是线段、上的点,平分,,,交于点.
求证:平分.
证明:平分(已知)
( )
(已知)
( )
( )
(等量代换)
( )
( )
( )
( )
平分( )
二十、解答题
20.如图①,在平面直角坐标系中,点、在轴上,,,.
(1)写出点、、的坐标.
(2)如图②,过点作交轴于点,求的大小.
(3)如图③,在图②中,作、分别平分、,求的度数.
二十一、解答题
21.已知:的立方根是,的算术平方根3,是的整数部分.
(1)求的值;
(2)求的平方根.
二十二、解答题
22.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是 ;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?
二十三、解答题
23.如图,直线,点是、之间(不在直线,上)的一个动点.
(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;
(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;
(3)如图3,若点是下方一点,平分, 平分,已知,求的度数.
二十四、解答题
24.已知,将一副三角板中的两块直角三角板如图1放置,,,,.
(1)若三角板如图1摆放时,则______,______.
(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;
(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数.
二十五、解答题
25.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
(特殊化)
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
(2)当∠1=70°,求∠EPB的度数;
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同位角的定义,逐一判断选项,即可.
【详解】
解:A. ∠1和∠2是同位角,故该选项符合题意;
B. ∠1和∠2不是同位角,故该选项不符合题意;
C. ∠1和∠2不是同位角,故该选项不符合题意;
D. ∠1和∠2不是同位角,故该选项不符合题意,
故选 A.
【点睛】
本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.
2.A
【分析】
根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.
【详解】
解:A、可以由一个“基本图案”平移得到,故本选项符合题意;
B、不是由一个“基本图案”平移得到,故本选项
解析:A
【分析】
根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.
【详解】
解:A、可以由一个“基本图案”平移得到,故本选项符合题意;
B、不是由一个“基本图案”平移得到,故本选项不符合题意;
C、可以由一个“基本图案”旋转得到,故本选项不符合题意;
D、可以由一个“基本图案”旋转得到,故本选项不符合题意.
故选:A.
【点睛】
本题主要考查了图形的平移和旋转,准确分析判断是解题的关键.
3.B
【分析】
根据各象限内点的坐标特征对各选项分析判断即可得解.
【详解】
解:A、点在x轴上,不符合题意;
B、点在第二象限,符合题意;
C、点在第三象限,不符合题意;
D、点在第四象限,不符合题意;
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据等边三角形的性质可以判断①,根据三角形重心的定义可判断②,根据三角形内角和定理可判断③,根据三角形角平分线的定义可以判断④,根据三角形的内角的定义可以判断⑤,根据三角形的高的定义以及直角三角形的高可以判断⑥.
【详解】
①等边三角形是等腰三角形,①正确;
②三角形的重心是三角形三条中线的交点,②正确;
③三角形的外角等于不相邻的两个内角的和,故③不正确;
④三角形的角平分线是线段,故④不正确;
⑤三角形相邻两边组成的角且位于三角形内部的角,叫三角形的内角,⑤错误;
⑥三角形的高所在的直线交于一点,这一点可以在三角形内或在三角形外或者在三角形的边上.
正确的有①②,共计2个,
故选B
【点睛】
本题考查了命题的判断,等边三角形的性质,三角形的重心,三角形的内角和定理,三角形的角平分线,三角形的内角的定义,三角形垂心的位置,掌握相关性质定理是解题的关键.
5.B
【分析】
根据AB∥CD,∠3=130°,求得∠GAB=∠3=130°,利用平行线的性质求得∠BAE=180°﹣∠GAB=180°﹣130°=50°,由∠1=∠2 求出答案即可.
【详解】
解:∵AB∥CD,∠3=130°,
∴∠GAB=∠3=130°,
∵∠BAE+∠GAB=180°,
∴∠BAE=180°﹣∠GAB=180°﹣130°=50°,
∵∠1=∠2,
∴∠2=∠BAE=×50°=25°.
故选:B.
【点睛】
此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键.
6.D
【分析】
对每个选项依次计算判断即可.
【详解】
①,故该项错误;
②无意义,故该项错误;
③,故该项错误;
④,故该项错误.
共4个错误的,
故选:D.
【点睛】
此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简.
7.A
【分析】
过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.
【详解】
解:由题意得,AB∥DE,
过点C作CF∥AB,则CF∥DE,
∴∠BCF+∠ABC=180°,
∴∠BCF=60°,
∴∠DCF=20°,
∴∠CDE=∠DCF=20°.
故选:A.
【点睛】
本题主要考查了平行线的性质,合理作出辅助线是解题的关键.
8.A
【分析】
到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个
解析:A
【分析】
到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个点,
【详解】
解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,
横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,
横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,
∴横坐标以n结束的有n2个点,
第2025个点是(45,0),
∴2021个点的坐标是(45,4);
故选:A.
【点睛】
本题考查了点的坐标,观察出点的个数与横坐标存在平方关系是解题的关键.
九、填空题
9.±6 9.
【解析】
∵(±6)2=36,
∴36的平方根是±6;
∵92=81,
∴81的算术平方根是9.
解析:±6 9.
【解析】
∵(±6)2=36,
∴36的平方根是±6;
∵92=81,
∴81的算术平方根是9.
十、填空题
10.(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点
解析:(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点睛】
本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.
十一、填空题
11.17
【详解】
∵0B、OC为△ABC的角平分线,
∴∠ABO=∠OBC,∠ACO=∠BCO,
∵DE∥BC,
∴∠DOB=∠OBC,∠EOC=∠OCB,
∴∠ABO=∠DOB,∠ACO=∠EOC,
解析:17
【详解】
∵0B、OC为△ABC的角平分线,
∴∠ABO=∠OBC,∠ACO=∠BCO,
∵DE∥BC,
∴∠DOB=∠OBC,∠EOC=∠OCB,
∴∠ABO=∠DOB,∠ACO=∠EOC,
∴BD=OD,EC=OE,
∴DE=OD+OE=BD+EC;
∵△ADE的周长为12,
∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,
∵BC=7,
∴△ABC的周长为:AB+AC+BC=12+5=17.
故答案为17.
十二、填空题
12.【分析】
由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.
【详解】
解:由图形可知:∠ACB=30°,∠DEF=45°
∵ED∥BC,
解析:
【分析】
由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.
【详解】
解:由图形可知:∠ACB=30°,∠DEF=45°
∵ED∥BC,
∴∠DEC=∠ACB=30°
∴∠CEF=∠DEF-∠DEC =45°-30°=15°,
∴∠AEF=180°-∠CEF=165°
故答案为:165°.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.
十三、填空题
13.【分析】
根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可.
【详解】
解:∵折叠,
∴,,
∵,
∴,
∴.
故答案是:.
【点睛】
本题考查折叠问题,解题的关键是掌握折叠的性质
解析:
【分析】
根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可.
【详解】
解:∵折叠,
∴,,
∵,
∴,
∴.
故答案是:.
【点睛】
本题考查折叠问题,解题的关键是掌握折叠的性质.
十四、填空题
14.【分析】
由题干得到,将原式进行整理化简即可求解.
【详解】
∵,
∴,
∴
.
【点睛】
本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.
解析:
【分析】
由题干得到,将原式进行整理化简即可求解.
【详解】
∵,
∴,
∴
.
【点睛】
本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.
十五、填空题
15.【分析】
连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.
【详解】
解:连接OP,如图:
∵A(2,0),B(0,3),
∴OA=2,OB=3,
解析:
【分析】
连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.
【详解】
解:连接OP,如图:
∵A(2,0),B(0,3),
∴OA=2,OB=3,
∵∠AOB=90°,
∴,
∵点P(m,n)为第三象限内一点,
,
,
,
,
整理可得:;
故答案为:.
【点睛】
本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.
十六、填空题
16.【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,
解析:
【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,4),P8(-5,4), …
P2n-1(n,n),P2n(-n-1,n)(n为正整数),
所以2n=2020, ∴n=1010, 所以P 2020(-1011,1010),
故答案为(-1011,1010).
【点睛】
本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.
十七、解答题
17.(1) - (2)±3
【详解】
试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;
试题解析:
(1)原式= ;
(2)x2-4=5
x2=9
x=3或x=-3
解析:(1) - (2)±3
【详解】
试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;
试题解析:
(1)原式= ;
(2)x2-4=5
x2=9
x=3或x=-3
十八、解答题
18.(1) ;(2).
【分析】
(1)首先求出的值是多少,然后根据平方根的含义和求法,求出x的值即可.
(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.
【详解】
(1)
解
解析:(1) ;(2).
【分析】
(1)首先求出的值是多少,然后根据平方根的含义和求法,求出x的值即可.
(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.
【详解】
(1)
解得:
故答案为:
(2)
解得:
故答案为:
【点睛】
本题考查了平方根的含义和求法,立方根的含义和求法.
十九、解答题
19.见解析
【分析】
根据平行线的性质,角平分线的定义填写理由即可.
【详解】
证明:平分(已知)
(角平分线的定义)
(已知)
(同位角相等,两直线平行)
(两直线平行,内错角相等)
(等量代换)
(
解析:见解析
【分析】
根据平行线的性质,角平分线的定义填写理由即可.
【详解】
证明:平分(已知)
(角平分线的定义)
(已知)
(同位角相等,两直线平行)
(两直线平行,内错角相等)
(等量代换)
(已知)
(两直线平行,同位角相等)
(两直线平行,内错角相等)
(等量代换)
平分(角平分线的定义)
【点睛】
本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.
二十、解答题
20.(1),,;(2)90°;(3)45°
【分析】
(1)根据图形和平面直角坐标系,可直接得出答案;
(2)根据两直线平行,内错角相等可得,则∠;
(3)根据角平分线的定义可得,过点作,然后根据平行
解析:(1),,;(2)90°;(3)45°
【分析】
(1)根据图形和平面直角坐标系,可直接得出答案;
(2)根据两直线平行,内错角相等可得,则∠;
(3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出, .
【详解】
解:(1)依题意得:,,;
(2)∵,
∴,
∴;
(3)∵,
∴,
∵,分别平分,,
∴
,
过点作,
则,,
∴.
【点睛】
本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C的坐标是解题的关键,(3)作出平行线是解题的关键.
二十一、解答题
21.(1);(2)其平方根为.
【分析】
(1)根据立方根,算术平方根,无理数的估算即可求出的值;
(2)将(1)题求出的值代入,求出值之后再求出平方根.
【详解】
解:(1)由题得.
.
又,
解析:(1);(2)其平方根为.
【分析】
(1)根据立方根,算术平方根,无理数的估算即可求出的值;
(2)将(1)题求出的值代入,求出值之后再求出平方根.
【详解】
解:(1)由题得.
.
又,
.
.
.
(2)当时,
.
∴其平方根为.
【点睛】
本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键.
二十二、解答题
22.(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小
解析:(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可.
【详解】
解:(1)由题意得,大正方形的面积为200+200=400cm2,
∴边长为: ;
根据题意设长方形长为 cm,宽为 cm,
由题:
则
长为
无法裁出这样的长方形.
【点睛】
本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.
二十三、解答题
23.(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以
解析:(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.
【详解】
解:(1)∠C=∠1+∠2,
证明:过C作l∥MN,如下图所示,
∵l∥MN,
∴∠4=∠2(两直线平行,内错角相等),
∵l∥MN,PQ∥MN,
∴l∥PQ,
∴∠3=∠1(两直线平行,内错角相等),
∴∠3+∠4=∠1+∠2,
∴∠C=∠1+∠2;
(2)∵∠BDF=∠GDF,
∵∠BDF=∠PDC,
∴∠GDF=∠PDC,
∵∠PDC+∠CDG+∠GDF=180°,
∴∠CDG+2∠PDC=180°,
∴∠PDC=90°-∠CDG,
由(1)可得,∠PDC+∠CEM=∠C=90°,
∴∠AEN=∠CEM,
∴,
(3)设BD交MN于J.
∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,
∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,
∵PQ∥MN,
∴∠BJA=∠PBD=50°,
∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,
由(1)可得,∠ACB=∠PBC+∠CAM,
∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.
【点睛】
本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.
二十四、解答题
24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当B
解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可.
【详解】
解:(1)作EI∥PQ,如图,
∵PQ∥MN,
则PQ∥EI∥MN,
∴∠α=∠DEI,∠IEA=∠BAC,
∴∠DEA=∠α+∠BAC,
∴α= DEA -∠BAC=60°-45°=15°,
∵E、C、A三点共线,
∴∠β=180°-∠DFE=180°-30°=150°;
故答案为:15°;150°;
(2)∵PQ∥MN,
∴∠GEF=∠CAB=45°,
∴∠FGQ=45°+30°=75°,
∵GH,FH分别平分∠FGQ和∠GFA,
∴∠FGH=37.5°,∠GFH=75°,
∴∠FHG=180°-37.5°-75°=67.5°;
(3)当BC∥DE时,如图1,
∵∠D=∠C=90,
∴AC∥DF,
∴∠CAE=∠DFE=30°,
∴∠BAM+∠BAC=∠MAE+∠CAE,
∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;
当BC∥EF时,如图2,
此时∠BAE=∠ABC=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°;
当BC∥DF时,如图3,
此时,AC∥DE,∠CAN=∠DEG=15°,
∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.
综上所述,∠BAM的度数为30°或90°或120°.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
二十五、解答题
25.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当
解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.
【分析】
(1)利用外角和角平分线的性质直接可求解;
(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;
(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;
【详解】
解:(1)∵BD平分∠ABC,
∴∠ABD=∠DBC=∠ABC=50°,
∵∠EPB是△PFB的外角,
∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;
(2)①当交点P在直线b的下方时:
∠EPB=∠1﹣50°=20°;
②当交点P在直线a,b之间时:
∠EPB=50°+(180°﹣∠1)=160°;
③当交点P在直线a的上方时:
∠EPB=∠1﹣50°=20°;
(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;
②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;
【点睛】
考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.
展开阅读全文