资源描述
数学八年级下册数学期末试卷练习(Word版含答案)
一、选择题
1.当x=0时,下列式子有意义的是( )
A. B. C. D.
2.下列满足条件的三角形中,不是直角三角形的是( )
A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3
C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5
3.如图,在下列条件中,能判定四边形ABCD是平行四边形的是( )
A.AD//BC,AB=CD B.∠AOB=∠COD,∠AOD=∠COB
C.OA=OC,OB=OD D.AB=AD,CB=CD
4.某大学生的平时成绩分,期中成绩分,期末成绩分,若计算学期总评成绩的方法如下:平时成绩∶期中成绩∶期末成绩,则该学生的学期总评成绩是( )
A.分 B.分
C.分 D.分
5.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:
①若AC=BD,则四边形EFGH为矩形;
②若AC⊥BD,则四边形EFGH为菱形;
③若四边形EFGH是平行四边形,则AC与BD互相平分;
④若四边形EFGH是正方形,则AC与BD互相垂直且相等.
其中正确的个数是( )
A.1 B.2 C.3 D.4
6.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为
A.15°或30° B.30°或45° C.45°或60° D.30°或60°
7.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,于点E,于点F,连接AP,给出下列结论:①;②四边形PECF的周长为8;③一定是等腰三角形;④;⑤EF的最小值为;其中正确结论的序号为( )
A.①②④ B.①③⑤ C.②③④ D.①②④⑤
8.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则( )
A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣9
二、填空题
9.使式子有意义的x的取值范围是______.
10.菱形的周长是20,一条对角线的长为6,则它的面积为_____.
11.如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=_____.
12.如图,在矩形中,,在边找一点,沿直线把折叠,若点恰好落在边上的点处,且的面积为,则的长是__________.
13.若直线y=kx+b(k≠0)经过点A(0,3),且与直线y=mx﹣m(m≠0)始终交于同一点(1,0),则k的值为________.
14.如图,在ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是菱形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AB=AC,那么四边形AEDF是菱形.其中,正确的有_____.(只填写序号)
15.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为 ________________.
16.已知,如图,在中,是上的中线,如果将沿翻折后,点的对应点,那么的长为__________.
三、解答题
17.计算:
(1);
(2);
(3);
(4).
18.如图,有一直立标杆,它的上部被风从B处吹折,杆顶C着地,离杆脚2m,修好后又被风吹折,因新断处D比前一次低0.5m,故杆顶E着地比前次远1m,求原标杆的高度.
19.在△ABC中,AB,BC,AC三边的长分别为,求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即三个顶点都在小正方形的顶点处,如图1所示,这样不需要求△ABC的高,而借用网格就能计算出它的面积.)
(1)请将△ABC的面积直接填写在横线上 .
(2)我们把上述求△ABC面积的方法叫做构图法,若△ABC三边的长分别为,2(a>0),请在图②中给出的正方形网格内(每个小正方形的边长为a)画出相应的△ABC(其中一条边已经画好),并求出它的面积.
20.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点M为AD的中点,过点M作交CD延长线于点N.
(1)求证:四边形是平行四边形;
(2)请直接写出当四边形ABCD的边AB与BD满足什么关系时,四边形分别是菱形、矩形、正方形.
21.已知实数a,b满足:b2=1+﹣,且|b|+b>0
(1)求a,b的值;
(2)利用公式,求++…+
22.某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,
(1)当时,单价y为______元;当单价y为8.8元时,购买量x(千克)的取值范围为______;
(2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式;
(3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元?
23.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.
(1)求点E的坐标;
(2)点P从O出发,沿折线O-A-E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,井直接写出t的取值范围.
(3)在(2)的条件下.当PA =PE时,在平面直角坐标系中是否存在点Q.使得以点P、E、 G、 Q为顶点的四边形为平行四边形? 若不存在,请说明理出, 若存在,请求出点Q的坐标.
24.如图,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B(0,m)、C(0,n)两点,且m、n(m>n)满足方程组的解.
(1)求证:AC⊥AB;
(2)若点D在直线AC上,且DB=DC,求点D的坐标;
(3)在(2)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.
25.如图,已知点A(a,0),点C(0,b),其中a、b满足|a﹣8|+b2﹣8b+16=0,四边形OABC为长方形,将长方形OABC沿直线AC对折,点B与点B′对应,连接点C交x轴于点D.
(1)求点A、C的坐标;
(2)求OD的长;
(3)E是直线AC上一个动点,F是y轴上一个动点,求△DEF周长的最小值.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据零指数幂、分式有意义,二次根式有意义的条件进行判断即可;
【详解】
解:当x=0时, 没有意义,则没有意义;
当x=0时, ,则没有意义;
当x=0时,x-1=-1,则没有意义;
故选:C
【点睛】
本题考查了零指数幂、分式有意义,二次根式有意义的条件,熟练掌握相关知识是解题的关键
2.D
解析:D
【分析】
根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.
【详解】
A、设三个内角的度数为,,根据三角形内角和公式,求得,所以各角分别为30°,60°,90°,故此三角形是直角三角形;
B、三边符合勾股定理的逆定理,所以是直角三角形;
C、设三条边为,,,则有,符合勾股定理的逆定理,所以是直角三角形;
D、设三个内角的度数为,,,根据三角形内角和公式,求得,所以各角分别为45°,60°,75°,所以此三角形不是直角三角形;
故选D.
【点睛】
本题考查了三角形内角和定理和勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
3.C
解析:C
【解析】
【分析】
由平行四边形的判定可求解.
【详解】
A、由AD∥BC,AB=CD不能判定四边形ABCD为平行四边形;
B、由∠AOB=∠COD,∠AOD=∠COB不能判定四边形ABCD为平行四边形;
C、由OA=OC,OB=OD能判定四边形ABCD为平行四边形;
D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形;
故选:C.
【点睛】
本题考查了平行四边形的判定定理,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.
4.B
解析:B
【解析】
【分析】
根据题意和题目中的数据,利用加权平均数的计算方法可以计算出该学生的学期总评成绩.
【详解】
由题意可得,
=86分,
即该学生的学期总评成绩是86分,
故选:B.
【点睛】
本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的方法解答.
5.A
解析:A
【分析】
①由菱形的判定定理即可判断;②由矩形的判定定理,即可判断;③若四边形EFGH是平行四边形,与AC、BD是否互相平分无任何关系;④根据中位线性质解题.
【详解】
解:由题意得:四边形EFGH平行四边形,
①若AC=BD,则四边形EFGH是菱形,故①错误;
②若AC⊥BD,则四边形EFGH是矩形,故②错误;
③若四边形EFGH是平行四边形,不能判定AC、BD是否互相平分,故③错误;
④点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点
若四边形EFGH是正方形,
AC与BD互相垂直且相等,故④正确.
故选:A.
【点睛】
本题考查矩形、正方形、菱形等特殊四边形的判定与性质,是重要考点,难度较易,掌握相关知识是解题关键.
6.D
解析:D
【解析】
【详解】
试题分析:∵四边形ABCD是菱形, ∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,
∵∠BAD=120°, ∴∠ABC=180°﹣∠BAD=180°﹣120°=60°, ∴∠ABD=30°,∠BAC=60°.
∴剪口与折痕所成的角a的度数应为30°或60°.
考点:剪纸问题
7.D
解析:D
【解析】
【分析】
①据正方形的对角线平分对角的性质,得△PDF是等腰直角三角形,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得DP=EC.②先证明四边形PECF为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC,则四边形PECF的周长为8;③根据P的任意性可以判断△APD不一定是等腰三角形;④由②可知,四边形PECF为矩形,则通过正方形的轴对称性,证明AP=EF;⑤当AP最小时,EF最小,EF的最小值等于2.
【详解】
解:①如图,延长FP交AB与G,连PC,延长AP交EF与H,
∵GF∥BC,
∴∠DPF=∠DBC,
∵四边形ABCD是正方形
∴∠DBC=45°
∴∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC=DF,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴DP=EC.
故①正确;
②∵PE⊥BC,PF⊥CD,∠BCD=90°,
∴四边形PECF为矩形,
∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,
故②正确;
③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45°,
∴当∠PAD=45°或67.5°或90°时,△APD是等腰三角形,
除此之外,△APD不是等腰三角形,
故③错误.
④∵四边形PECF为矩形,
∴PC=EF,
由正方形为轴对称图形,
∴AP=PC,
∴AP=EF,
故④正确;
⑤由EF=PC=AP,
∴当AP最小时,EF最小,
则当AP⊥BD时,即AP=BD=×4=2时,EF的最小值等于2,
故⑤正确;
综上所述,①②④⑤正确,
故选D.
【点睛】
本题考查了正方形的性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.
8.D
解析:D
【分析】
先利用正比例函数解析式,确定A点坐标;然后利用函数图像,写出一次函数y=kx+b(k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.
【详解】
解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣9,
所以当x>﹣9时,kx+b>x,
即kx﹣x>﹣b的解集为x>﹣9.
故选D.
【点睛】
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、填空题
9.且
【解析】
【分析】
根据分式的分母不能为0,二次根式的被开方数大于或等于0列出式子求解即可.
【详解】
由题意得:3-5x≥0且x+1≠0,
解得 x≤且 x≠−1 ,
故答案为: x≤且 x≠−1.
【点睛】
本题考查了分式和二次根式有意义的条件,解题的关键是熟练掌握分式和二次根式的定义.
10.D
解析:【解析】
【分析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.
【详解】
由题意得,
∵菱形ABCD
∴,AC⊥BD
∴
∴
∴
考点:本题考查的是菱形的性质
【点睛】
解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.
11.A
解析:17
【解析】
【分析】
根据勾股定理即可得到结论.
【详解】
解:∵∠ACB=90°,S1=5,S2=12,
∴AC2=5,BC2=12,
∴AB2=AC2+BC2=5+12=17,
∴S3=17,
故答案为:17.
【点睛】
本题考查了勾股定理,正方形的面积,正确的识别图形是解题的关键.
12.
【分析】
先求解 再利用勾股定理求解 可得的长度,设 则 再利用勾股定理列方程解方程即可.
【详解】
解: 矩形中,,的面积为,
由对折可得:
设 则
故答案为:
【点睛】
本题考查的是矩形的性质,轴对称的性质,勾股定理的应用,掌握以上知识是解题的关键.
13.A
解析:-3
【分析】
根据题意直线y=kx+b(k≠0)经过点A(0,3)和点(1,0),然后根据待定系数法即可求得k的值.
【详解】
解:∵直线y=kx+b(k≠0)经过点A(0,3)和点(1,0),
∴,
解得k=﹣3,
故答案为:-3.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟练运用待定系数法是解题的关键.
14.D
解析:①③
【分析】
根据平行四边形的判定和菱形的判定解答即可.
【详解】
解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,故①正确;
∵∠BAC=90°,四边形AEDF是平行四边形,
∴四边形AEDF是矩形,故②错误;
∵AD平分∠BAC,四边形AEDF是平行四边形,
∴四边形AEDF是菱形,故③正确;
∵AB=AC,四边形AEDF是平行四边形,
不能得出AE=AF,故四边形AEDF不一定是菱形,故④错误;
故答案为:①③.
【点睛】
此题考查菱形的判定,关键是就平行四边形的判定和菱形的判定解答.
15.【分析】
设C(a,﹣3a),B(b,kb),由正方形的性质AB=BC,BC//AD,可得﹣3a=kb,b﹣a=kb,求出b=﹣2a,即可求k的值.
【详解】
解:设C(a,﹣3a),B(b,kb
解析:
【分析】
设C(a,﹣3a),B(b,kb),由正方形的性质AB=BC,BC//AD,可得﹣3a=kb,b﹣a=kb,求出b=﹣2a,即可求k的值.
【详解】
解:设C(a,﹣3a),B(b,kb),
∵四边形ABCD是正方形,
∴BC//x轴,
∴﹣3a=kb,
∵BC=AB,
∴b﹣a=kb,
∴b﹣a=﹣3a,
∴b=﹣2a,
∴﹣3a=﹣2ak,
∴k=,
故填.
【点睛】
本题主要考查正方形的性质及一次函数的综合运用,根据题意设出点坐标、再根据正方形的性质明确线段间的关系是解答本题的关键.
16..
【分析】
先用勾股定理求得BC,利用斜边上的中线性质,求得CD,BD的长,再利用折叠的性质,引进未知数,用勾股定理列出两个等式,联立方程组求解即可.
【详解】
如图所示,
∵,
∴BC==8,
解析:.
【分析】
先用勾股定理求得BC,利用斜边上的中线性质,求得CD,BD的长,再利用折叠的性质,引进未知数,用勾股定理列出两个等式,联立方程组求解即可.
【详解】
如图所示,
∵,
∴BC==8,
∵CD是上的中线,
∴CD=BD=AD=5,
设DE=x,BE=y,
根据题意,得
,
,
解得x=,y=,
∴,
故答案为:.
【点睛】
本题考查了勾股定理,斜边上中线的性质,方程组的解法,折叠的性质,熟练掌握折叠的性质,正确构造方程组计算是解题的关键.
三、解答题
17.(1)1;(2)2;(3)1;(4).
【分析】
根据二次根式的除法、乘法法则运算,平方差公式计算、然后利用二次根式的性质化简后进行减法运算,合并即可.
【详解】
解:(1)原式,
,
,
;
(2
解析:(1)1;(2)2;(3)1;(4).
【分析】
根据二次根式的除法、乘法法则运算,平方差公式计算、然后利用二次根式的性质化简后进行减法运算,合并即可.
【详解】
解:(1)原式,
,
,
;
(2)原式,
;
(3)原式,
,
;
(4)原式,
,
,
.
【点睛】
本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则、乘法公式,解题的关键是掌握二次根式的混合运算.
18.5米
【分析】
由题中条件,可设原标杆AB的高为x,进而再依据勾股定理建立方程,进而求解即可.
【详解】
解:依题意得AC=2,AE=3,
设原标杆的高为x,
∵∠A=90°,
∴由题中条件可得AB
解析:5米
【分析】
由题中条件,可设原标杆AB的高为x,进而再依据勾股定理建立方程,进而求解即可.
【详解】
解:依题意得AC=2,AE=3,
设原标杆的高为x,
∵∠A=90°,
∴由题中条件可得AB2+AC2=BC2,即AB2+22=(x﹣AB)2,
整理,得x2﹣2ABx=4,
同理,得(AB﹣0.5)2+32=(x﹣AB+0.5)2,
整理,得x2﹣2ABx+x=9,
解得x=5.
∴原来标杆的高度为5米.
【点睛】
本题主要考查了勾股定理的应用,解题的关键在于能够熟练掌握勾股定理.
19.(1);(2)画图见解析,3a2
【解析】
【分析】
(1)利用割补法求值;
(2)已知边长AB=,再确定另两条边分别是以2a和2a为直角三角形的两直角边的斜边长及以a和2a为直角边的斜边长,即,连
解析:(1);(2)画图见解析,3a2
【解析】
【分析】
(1)利用割补法求值;
(2)已知边长AB=,再确定另两条边分别是以2a和2a为直角三角形的两直角边的斜边长及以a和2a为直角边的斜边长,即,连接得到三角形求出面积即可.
【详解】
解:(1),
故答案为:;
(2)如图, .
【点睛】
此题考查利用割补法求网格中图形的面积,网格中作图,正确掌握利用勾股定理求无理数长度的线段并画图是解题的关键.
20.(1)见解析;(2)时,四边形MNDO是菱形;当时,四边形MNDO是矩形;当且时,四边形MNDO是正方形
【分析】
(1)利用平行四边形的性质及三角形中位线的性质,可得,再加已知条件,利用平行四边形
解析:(1)见解析;(2)时,四边形MNDO是菱形;当时,四边形MNDO是矩形;当且时,四边形MNDO是正方形
【分析】
(1)利用平行四边形的性质及三角形中位线的性质,可得,再加已知条件,利用平行四边形的判定定理(有两组对边分别平行的四边形是平行四边形)即可证明;
(2)①根据(1)中平行四边形的性质及三角形中位线的性质可得:,,当时,,利用菱形的判定定理(有一组邻边相等的平行四边形是菱形);
②根据(1)中平行四边形的性质可得:,,当时,,根据矩形的判定定理(有一个角是直角的平行四边形是矩形)即可证明;
③根据(1)中平行四边形的性质及三角形中位线的性质可得::,,且,,当且时,且,根据正方形的判定定理(一组邻边相等、有一个角是直角的平行四边形是正方形)即可证明.
【详解】
解:(1)证明:∵对角线AC、BD交于点O,
∴,
又∵M为AD中点,
∴,
又∵,
∴四边形MNDO是平行四边形;
(2)①当时,四边形MNDO是菱形,
证明:根据(1)可得,四边形MNDO是平行四边形,且,,
又∵,
∴,
∴四边形MNDO是菱形;
②当时,四边形MNDO是矩形,
证明:根据(1)可得,四边形MNDO是平行四边形,且,,
又∵,
∴,
∴四边形MNDO是矩形;
③当且时,四边形MNDO是正方形,
证明:根据(1)可得,四边形MNDO是平行四边形及三角形中位线的性质可得:,,且,,
又∵且,
∴且,
∴四边形MNDO是正方形.
【点睛】
题目主要考查平行四边形、菱形、矩形及正方形的判定定理,熟练运用特殊四边形的判定定理是解题关键.
21.(1)a的值为2,b的值为1;(2)2018.
【解析】
【分析】
(1)根据二次根式有意义的条件得到
(2)根据公式 将原式化成多个式子相减,起到互相抵消的效果,做到化繁为简.
【详解】
(1
解析:(1)a的值为2,b的值为1;(2)2018.
【解析】
【分析】
(1)根据二次根式有意义的条件得到
(2)根据公式 将原式化成多个式子相减,起到互相抵消的效果,做到化繁为简.
【详解】
(1)由题意得:,
∵b2=1+
∴b=±1
∵|b|+b>0
∴b=1
∴a的值为2,b的值为1.
(2),
【点睛】
本题主要考查二次根式有意义的条件,学会应用公式推导一般并能实际运用.
22.(1)10;;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元.
【分析】
(1)根据观察函数图象的横坐标,纵坐标,可得结果;
(2)根据待定系数法,设函数
解析:(1)10;;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元.
【分析】
(1)根据观察函数图象的横坐标,纵坐标,可得结果;
(2)根据待定系数法,设函数图象的解析式 (k是常数,b是常数,),将,两个点代入求解即可得函数的解析式;
(3)将代入(2)函数解析式即可.
【详解】
解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.
故答案为:10;;
(2)设函数图象的解析式 (k是常数,b是常数,),
图象过点,,
可得:,
解得,
函数图象的解析式:;
(3)当时,
,
答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元.
【点睛】
本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键.
23.(1);(2)或;(3)存在,点Q坐标为:,,
【分析】
(1)设AE=x,根据勾股定理列方程得:,解出可得结论;
(2)分两种情况:P在OA或AE上,分别根据三角形面积列式即可;
(3)先根据分别
解析:(1);(2)或;(3)存在,点Q坐标为:,,
【分析】
(1)设AE=x,根据勾股定理列方程得:,解出可得结论;
(2)分两种情况:P在OA或AE上,分别根据三角形面积列式即可;
(3)先根据分别计算PA和PE的长,分类讨论,当PE为边时,如图4,过G作GH⊥OC于H,设OF=y,根据勾股定理列方程可得y的值,利用面积法计算GH的长,得G的坐标,根据平行四边形的性质和平移规律可得Q的坐标;当PE为对角线时,借助中点坐标法即可求得点Q的坐标,综上即可得出点Q所有可能性.
【详解】
解:(1)在矩形ABCO中,B(8,4),
∴AB=8,BC=4,
设AE=x,则EC=x,BE=8-x,
Rt△EBC中,由勾股定理得:EB2+BC2=EC2,
∴
解得:x=5,
即AE=5,
∴E(5,4);
(2)分两种情况:
①当P在OA上时,0≤t≤2,如图2,
由题意知:,,,,
∴S=S矩形OABC-S△PAE-S△BEC-S△OPC,
=8×4-×5(4-2t)-×3×4-×8×2t,
=-3t+16,
②当P在AE上时,2<t≤4.5,如图3,
由题意知:
∴S=
综上所述:
(3)存在,由PA=PE可知:P在AE上
当PE为边时,如图4所示,过G作GH⊥OC于H,
∵AP+PE=5,
∴AP=3,PE=2,
设OF=y,则FG=y,FC=8-y,
由折叠得:∠CGF=∠AOF=,OA=CG,
由勾股定理得:FC2=FG2+CG2,
∴(8-y)2=y2+42,
解得:y=3,
∴FG=3,FC=8-3=5,
∴,
∴×5×GH=×3×4,
解得:GH=2.4,
由勾股定理得:FH,
∴OH=3+1.8=4.8,
∴G(4.8,-2.4),
∵点P、E、G、Q为顶点的四边形为平行四边形,且PE=2,
∴Q(4.8,-2.4)或(6.8,-2.4).
当PE为对角线时,如图5所示:过点G作交CF于点H
由上述可知:,,,设
由中点坐标法可得:
解得:
∴点
综上所述:点Q的坐标为:,,
【点睛】
此题考查四边形综合题,矩形的性质、翻折变换、勾股定理、中点坐标法求解、平行四边形的判定和性质,解题的关键是学会用分类讨论的思想思考问题.
24.(1)见解析;(2);(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)
【解析】
【分析】
(1)先解方程组得出m和n的值,从而得到B,C两点坐标,结合A点坐标算出AB2,
解析:(1)见解析;(2);(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)
【解析】
【分析】
(1)先解方程组得出m和n的值,从而得到B,C两点坐标,结合A点坐标算出AB2,BC2,AC2,利用勾股定理的逆定理即可证明;
(2)过D作DF⊥y轴于F,根据题意得到BF=FC,F(0,1),设直线AC:y=kx+b,利用A和C的坐标求出表达式,从而求出点D坐标;
(3)分AB=AP,AB=BP,AP=BP三种情况,结合一次函数分别求解.
【详解】
解:(1)∵,
得:,
∴B(0,3),C(0,﹣1),
∵A(﹣,0),B(0,3),C(0,﹣1),
∴OA=,OB=3,OC=1,
∴AB2=AO2+BO2=12,AC2=AO2+OC2=4,BC2=16
∴AB2+AC2=BC2,
∴∠BAC=90°,
即AC⊥AB;
(2)如图1中,过D作DF⊥y轴于F.
∵DB=DC,△DBC是等腰三角形
∴BF=FC,F(0,1),
设直线AC:y=kx+b,
将A(﹣,0),C(0,﹣1)代入得:
直线AC解析式为:y=x-1,
将D点纵坐标y=1代入y=x-1,
∴x=-2,
∴D的坐标为(﹣2,1);
(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)
设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,
把B(0,3)和D(﹣2,1)代入y=mx+n,
∴,
解得,
∴直线BD的解析式为:y=x+3,
令y=0,代入y=x+3,
可得:x=,∵OB=3,
∴BE=,
∴∠BEO=30°,∠EBO=60°
∵AB=,OA=,OB=3,
∴∠ABO=30°,∠ABE=30°,
当PA=AB时,如图2,
此时,∠BEA=∠ABE=30°,
∴EA=AB,
∴P与E重合,
∴P的坐标为(﹣3,0),
当PA=PB时,如图3,
此时,∠PAB=∠PBA=30°,
∵∠ABE=∠ABO=30°,
∴∠PAB=∠ABO,
∴PA∥BC,
∴∠PAO=90°,
∴点P的横坐标为﹣,
令x=﹣,代入y=x+3,
∴y=2,
∴P(﹣,2),
当PB=AB时,如图4,
∴由勾股定理可求得:AB=2,EB=6,
若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,
∴P1B=AB=2,
∴EP1=6﹣2,
∴FP1=3﹣,
令y=3﹣代入y=x+3,
∴x=﹣3,
∴P1(﹣3,3﹣),
若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,
∴P2B=AB=2,
∴EP2=6+2,
∴GP2=3+,
令y=3+代入y=x+3,
∴x=3,
∴P2(3,3+),
综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,
点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).
【点睛】
本题考查了解二元一次方程组,勾股定理的逆定理,含30°的直角三角形,等腰三角形的性质,一次函数的应用,知识点较多,难度较大,解题时要注意分类讨论.
25.(1)A点的坐标为(8,0),C点的坐标为(0,4);(2)OD的长为3;(3)△DEF周长的最小值为4.
【分析】
(1)根据非负数的性质可得a、b的值,由此可得问题的答案;
(2)根据长方形的性
解析:(1)A点的坐标为(8,0),C点的坐标为(0,4);(2)OD的长为3;(3)△DEF周长的最小值为4.
【分析】
(1)根据非负数的性质可得a、b的值,由此可得问题的答案;
(2)根据长方形的性质和折叠的性质可得A=AB=4,C=CB=8,∠=∠B=90°,设OD=x,CD=y,根据勾股定理列方程,求解可得答案;
(3)作点D关于y轴对称点为H,作点D关于直线AC对称点G,连接EG,HF,HG,由翻折的性质得D、H、G点的坐标,当点H,F,E,G四点共线时,DE+DF+EF长取得最小值,由此可得答案.
【详解】
解:(1)∵|a﹣8|+b2﹣8b+16=0,
∴|a﹣8|+(b﹣4)2=0,
∵|a﹣8|≥0,(b﹣4)2≥0,
∴a﹣8=0,b﹣4=0,
∴a=8,b=4,
∴A点的坐标为(8,0),C点的坐标为(0,4);
(2)∵A点的坐标为(8,0),C点的坐标为(0,4),
∴OA=8,OC=4,
∵四边形OABC为长方形,
∴AB=OC=4BC=OA=8,∠B=∠COA=∠OCB=∠OAB=90°,
由折叠性质可知:A=AB=4,C=CB=8,∠=∠B=90°,
设OD=x,CD=y,
则AD=OA﹣OD=8﹣x,D=C﹣CD=8﹣y,
Rt△OCD中,CD2=OC2+OD2,
即x2+16=y2①,
Rt△AD中,AD2=D2+A2,
即(8﹣x)2=(8﹣y)2+16②,
联立①②式解得:,
∴OD=3,
故OD的长为3.
(3)如图所示,作点D关于y轴对称点为H,作点D关于直线AC对称点G,连接EG,HF,HG,
∵△AC为△ACB沿AC翻折得到,点D在BC上,
∴点D关于AC对称点G在BC上,
由对称性可知:CG=CD,HF=DF,
∵OD=3,CD=5,
∴D点的坐标为(3,0),
又∵H的坐标为(﹣3,0),
∴CG=CD=5,
∴G点的坐标为(5,4),
∴△DEF的周长=DE+DF+EF=HF+EG+EF≥GH,
当点H,F,E,G四点共线时,DE+DF+EF长取得最小值为:
GH==4,
故△DEF周长的最小值为4.
【点睛】
本题属于四边形综合题目,考查了一次函数的性质,长方形的性质,折叠的性质等知识,解题的关键是掌握折叠的性质,属于中考压轴题.
展开阅读全文