1、分数应用题一、基础理论(一)分数应用题的构建 1、分数应用题是小学数学教学中的重点和难点。它大体可以分成两种:(1)基本数量关系与整数应用题基本相同,只是把整数应用题中的已知数换成分数,解答方法与整数应用题基本相同。(2)根据分数乘除法的意义而产生的具有独特解法的分数应用题,这就是我们通常说的分数应用题。2、分数应用题主要讨论的是以下三者之间的关系:(1)分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。(2)标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。(3)比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。(二)分数应用题的分类
2、1、 求一个数的几分之几是多少。这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。即反映的是整体与部分之间关系的应用题,基本的数量关系是:整体量分率=分率的对应的部分量;或已知一个看作单位“1”的数,另一个数占它的几分之几,求另一个数,即反映的是甲乙两数之间关系的应用题,基本的数量关系是:标准量分率=分率的对应的比较量。(1)求一个数的几分之几是多少:标准量(分率)=是多少(分率对应的比较量)(2)求比一个数多几分之几多多少:标准量(分率)=多多少(分率对应的比较量)(3)求比一个数多几分之几是多少:标准量(1 + )(分率)=是多少(分率对应比较量)(4)求
3、比一个数少几分之几少多少:标准量(分率)=少多少(分率对应的比较量)(5)求比一个数少几分之几是多少:标准量(1 - )(分率)=是多少(分率对应比较量)2、 求一个数是另一个数的几分之几。这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。基本的数量关系是:比较量标准量=分率。 (1)求一个数是另一个数的几分之几: 比较量标准量=分率(几分之几)。 (2)求一个数比另一个数多几分之几:相差量标准量=分率(多几分之几)。 (3)求一个数比另一个数少几分之几:相差量标准量=分率(少几分之几)。3、已知一个数的几分之几是多少,求这个数。这类问题特点是已知一个数的几分之几是多少的
4、数量,求单位“1”的量,解这类应用题用除法。基本的数量关系是:分率对应的比较量分率=标准量。 (1)已知一个数的几分之几是多少,求这个数: 是多少(分率对应的比较量)(分率)=标准量。 (2)已知一个数比另一个数多几分之几多多少,求这个数:多多少(分率对应的比较量)(分率)=标准量。 (3)已知一个数比另一个数多几分之几是多少,求这个数:是多少(分率对应的比较量)(1 + )(分率)=标准量。 (4)已知一个数比另一个数少几分之几少多少,求这个数:少多少(分率对应的比较量)(分率)=标准量。 (5)已知一个数比另一个数少几分之几是多少,求这个数:是多少(分率对应的比较量)(1 )(分率)=标准
5、量。(三)分数应用题的基本训练1、正确审题能力训练 正确审题是正确解题的前提。这里所说的审题能力,首先是根据题中的分率句,能准确分清比较量和标准量(看分率是谁的几分之几,谁就是标准量),且判断标准量已知(用乘法)或未知(用除法),为确定解题方法奠定基础;其次会把“比”字句转化成“是”字句;第三是能将省略式的分率句换说成比较详细的句子的能力。 2、画线段图的训练 线段图有直观、形象等特点。按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。3、量、率对应关系训练 量、率对应关系的训练是解较复杂分数应用题的重要环节。通过训练,能根据应用题的已知条件发挥联想,
6、找出各种量、率间接对应关系,为正确解题铺平道路。3、 转化分率训练 在解较复杂的分数应用题时,常需要将间接分率转化为直接运用于解题的分率。(1)已修总长的,则未修是总长的1 = ;(2)甲班人数是乙班的,则乙班人数是甲班的;(3)今年比去年增产,则今年产量是去年的1 + = 1;(4)第一次运走总数的,第二次运走剩下的,则第二次运走的是总数的 (1 ) = 等。4、 由分率句到数量关系式训练“分率句 数量关系式”的训练,是确保正确列式解题的训练。如:由“男生比女生少”可列数量关系式:女生人数 (1 )= 男生人数; 女生人数= 男生比女生少的人数; 男生人数 (1 )= 女生人数;男生比女生少
7、的人数=女生人数。二、分析解答:较复杂的分数应用题。例1:学校食堂九月份用煤气640立方分米,十月份计划用煤气是九月份的,而十月份实际用煤气比原计划节约。十月份比原计划节约用煤气多少立方分米?(明确题中的三个数量,把那两个数量看做单位“1”,所求数量对应的分率。)九月份用煤气的体积=十月份比原计划节约用煤气的体积 640=144(立方分米) 答:十月份比原计划节约用煤气144立方分米。例2:鞋厂生产皮鞋,十月份生产的双数与九月份生产的双数的比是54。十月份生产2000双,九月份生产多少双?(比和已知数量不对应,不是按比例分配的应用题,需把比转化成分率。)解法一:十月份生产的双数是九月份生产的双
8、数的。十月份生产的双数= 九月份生产的双数 2000= 1600(双)解法二:九月份生产的双数是十月份生产的双数的。 十月份生产的双数= 九月份生产的双数 2000= 1600(双) 答:九月份生产1600双。例3:有一袋米,第一周吃了40%,第二周吃了12千克,还剩6千克。这袋大米原有多少千克?(比较量是两个数量的和,且对应的分率没有直接告诉。)(第二周吃的重量 + 还剩的重量) (1 40%)=这袋大米原有的重量 ( 12 + 6 ) (1 40%)= 30 (千克) 答:这袋大米原有30千克。例4:张师傅加工一批零件,第一天完成的个数与零件总个数的比是13。如果再加工15个,就可以完成这
9、批零件的一半。这批零件共有多少个?(关键是要找出“再加工15个”对应的分率。需要把比转化成分率,找出隐含的分率。)思考:有“第一天完成的个数与零件总个数的比是13”可得出“第一天完成的个数是零件总个数的”;根据“如果再加工15个,就可以完成这批零件的一半” 可得出“现在完成的个数是零件总个数的”;所以“15个对应的分率是( )”。 再加的零件个数 ( )= 这批零件共有的个数 15 ( )= 90 (个)答:这批零件共有90个。例5:小红看一本故事书。第一天看了45页,第二天看了全书的,第二天看的页数恰好比第一天多20%。这本书一共有多少页?(关键是要找出“第一天看了45页”对应的分率。) 第一天看的页数(1+20%)= 这本书一共的页数 45(1+20%)=216(页) 答:这本书一共216页。