1、人教版八年级上册压轴题数学综合试题含解析(一)1操作发现:如图1,D是等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF,易证AF=BD(不需要证明);类比猜想:如图2,当动点D运动至等边ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。深入探究:如图3,当动点D在等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF,连接AF,BF你能发现AF,BF与AB有何数量关系,并证明你发现的结论。如图4,当动点D运动至等边ABC边BA的延长线上时,其它作法
2、与图3相同,猜想AF,BF与AB在上题中的结论是否仍然成立,若不成立,请给出你的结论并证明。2(初步探索)(1)如图:在四边形中,、分别是、上的点,且,探究图中、之间的数量关系(1)(1)小明同学探究此问题的方法是:延长到点,使连接,先证明,再证明,可得出结论,他的结论应是_;(2)(灵活运用)(2)如图2,若在四边形中,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;3(1)模型:如图1,在中,平分,求证:(2)模型应用:如图2,平分交的延长线于点,求证:(3)类比应用:如图3,平分,求证:4阅读下列材料,完成相应任务数学活动课上,老师提出了如下问题:如图1,已知中,是边上的中线求证
3、:智慧小组的证法如下:证明:如图2,延长至,使,是边上的中线在和中(依据一)在中,(依据二)任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1:_;依据2:_归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”“倍长中线法”多用于构造全等三角形和证明边之间的关系任务二:如图3,则的取值范围是_;任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,;中,连接试探究与的数量关系,并说明理由5请按照研究问题的步骤依次完成任务【问题背景】(1)如图1的图形我们把它称为“8字形”, 请说理证明A+B=C+
4、D 【简单应用】(2)如图2,AP、CP分别平分BAD、BCD,若ABC=20,ADC=26,求P的度数(可直接使用问题(1)中的结论) 【问题探究】(3)如图3,直线AP平分BAD的外角FAD,CP平分BCD的外角BCE, 若ABC=36,ADC=16,猜想P的度数为 ;【拓展延伸】(4)在图4中,若设C=x,B=y,CAP=CAB,CDP=CDB,试问P与C、B之间的数量关系为 (用x、y表示P) ;(5)在图5中,AP平分BAD,CP平分BCD的外角BCE,猜想P与B、D的关系,直接写出结论 6如图,ABC 中,AB=AC=BC,BDC=120且BD=DC,现以D为顶点作一个60角,使角
5、两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明(1)如图1,若MDN的两边分别交AB,AC边于M,N两点猜想:BM+NC=MN延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明)7ABC、DPC都是等边三角形(1)如图1,求证:APBD;(2)如图2,点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求证:BPBD;判断PC与PA的
6、数量关系并证明8我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”(1)如下:平行四边形,矩形,菱形,正方形,一定是“菠菜四边形”的是_(填序号);(2)如图1,四边形ABCD为“菠菜四边形”,且BADBCD90,ADAB,AECD于点E,若AE4,求四边形ABCD的面积;(3)如图2,四边形ABCD为“菠菜四边形”,且ABAD,记四边形ABCD,BOC,AOD的面积依次为S,若求证:ADBC;在的条件下,延长BA、CD交于点E,记BCm,DCn,求证:【参考答案】2成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BC
7、DACF,即可证明AF=BD;深入探究:AF+BF=解析:成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BCDACF,即可证明AF=BD;深入探究:AF+BF=AB,利用全等三角形BCDACF(SAS)的对应边BD=AF;同理BCFACD(SAS),则BF=AD,所以AF+BF=AB;结论不成立新的结论是AF=AB+BF;通过证明BCFACD(SAS),则BF=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF【详解】解:类比猜想:如图2中,ABC是等边三角形(已知),BC=AC,BCA=60(等边三角
8、形的性质);同理知,DC=CF,DCF=60;BCA+DCA=DCF+DCA,即BCD=ACF;在BCD和ACF中, BCDACF(SAS),BD=AF(全等三角形的对应边相等);深入探究:如图示AF+BF=AB;证明如下:由条件可知:BCA-DCA=DCF-DCA,即BCD=ACF,同理可证BCDACF(SAS),则BD=AF;同理BCFACD(SAS),则BF=AD,AF+BF=BD+AD=AB;结论不成立新的结论是AF=AB+BF;如图示:证明如下:等边DCF和等边DCF,由同理可知:在BCF和ACD中, BCFACD(SAS),BF=AD(全等三角形的对应边相等);又由知,AF=BD;
9、AF=BD=AB+AD=AB+BF,即AF=AB+BF【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.3(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=D解析:(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF
10、=BAE+DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF(1)解:BAEFADEAF理由:如图1,延长FD到点G,使DGBE,连接AG,DGBE,ABEADG,BAEDAG,AEAG,EF=BE+FD,DGBE,且AEAG,AFAF,AEFAGF,EAFGAFDAGDAFBAEDAF故答案为:BAEFADEAF;(2)如图2,延长FD到点G,使DGBE,连接AG, BADF180,ADGADF180,BADG,又ABAD,ABEADG(SAS),
11、BAEDAG,AEAG,EFBEFDDGFDGF,AFAF,AEFAGF(SSS),EAFGAFDAGDAFBAEDAF【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形解题时注意:同角的补角相等4(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证ACDAED,从而解析:(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,即可得出:=AB:AC;(2)在AB上取点E,
12、使得AE=AC,根据题意可证ACDAED,从而可求出,即可求解;(3)延长BE至M,使EM=DC,连接AM,根据题意可证ADCAEM,故而得出AE为BAM的角平分线,即,即可得出答案;【详解】解:(1)AD平分BAC,DEAB,DEAC,DE=DF, ,:=AB:AC;(2)如图,在AB上取点E,使得AE=AC,连接DE又 AD平分CAE, CAD=DAE,在ACD和AED中, ,ACDAED(SAS),CD=DE且ADC=ADE, , ,AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM, D+AEB=180,又AEB+AEM=180,D=AEM,在ADC与AEM中,AD
13、CAEM(SAS),DAC=EAM=BAE,AC=AM,AE为BAM的角平分线,故 ,BE:CD=AB:AC;【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;5任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据1:根据全等的判解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据
14、1:根据全等的判定方法判断即可;依据2:根据三角形三边关系判断;任务二:可根据任务一的方法直接证明即可;任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可【详解】解:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边任务二:任务三:EF=2AD理由如下:如图延长AD至G,使DG=AD,AD是BC边上的中线BD=CD在ABD和CGD中ABDCGDAB=CG,ABD=GCD 又AB=AEAE=CG在ABC中,ABC+BAC+ACB=180,GCD+BAC+ACB=180又BAE=90,CAF=90EAF+BAC=36
15、0-(BAE+CAF)=180EAF=GCD在EAF和GCA中EAFGCA EF=AGEF=2AD【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键6(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方解析:(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方程组即可得到结论;(3)由AP平分BAD的外角FAD,C
16、P平分BCD的外角BCE,推出1=2,3=4,推出PAD=180-2,PCD=180-3,由P+(180-1)=D+(180-3),P+1=B+4,推出2P=B+D,即可解决问题;(4)根据题意得出B+CAB=C+BDC,再结合CAP=CAB,CDP=CDB,得到y+(CAB-CAB)=P+(BDC-CDB),从而可得P=y+CAB-CAB-CDB+CDB=;(5)根据题意得出B+BAD=D+BCD,DAP+P=PCD+D,再结合AP平分BAD,CP平分BCD的外角BCE,得到BAD+P=BCD+(180-BCD)+D,所以P=90+BCD-BAD +D=.【详解】解:(1)证明:在AOB中,
17、A+B+AOB=180,在COD中,C+D+COD=180,AOB=COD,A+B=C+D;(2)解:如图2,AP、CP分别平分BAD,BCD,1=2,3=4,由(1)的结论得:,+,得2P+2+3=1+4+B+D,P=(B+D)=23;(3)解:如图3,AP平分BAD的外角FAD,CP平分BCD的外角BCE,1=2,3=4,PAD=180-2,PCD=180-3,P+(180-1)=D+(180-3),P+1=B+4,2P=B+D,P=(B+D)=(36+16)=26;故答案为:26;(4)由题意可得:B+CAB=C+BDC,即y+CAB=x+BDC,即CAB-BDC=x-y,B+BAP=P
18、+PDB,即y+BAP=P+PDB,即y+(CAB-CAP)=P+(BDC-CDP),即y+(CAB-CAB)=P+(BDC-CDB),P=y+CAB-CAB-CDB+CDB= y+(CAB-CDB)=y+(x-y)=故答案为:P=;(5)由题意可得:B+BAD=D+BCD,DAP+P=PCD+D,B-D=BCD-BAD,AP平分BAD,CP平分BCD的外角BCE,BAP=DAP,PCE=PCB,BAD+P=(BCD+BCE)+D,BAD+P=BCD+(180-BCD)+D,P=90+BCD-BAD +D=90+(BCD-BAD)+D=90+(B-D)+D=,故答案为:P=.【点睛】本题考查三
19、角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型7(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,B解析:(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,BDM=CDE,再根据MDN =60,BDC=120,可证MDN =NDE=60,得出DMNDEN,进而得到MN=BM+NC(2
20、)在CA上截取CE=BM,利用(1)中的证明方法,先证BMDCED(SAS),再证MDNEDN(SAS),即可得出结论【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DEBDC为等腰三角形,ABC为等边三角形,BD=CD,DBC=DCB,MBC=ACB=60,又BD=DC,且BDC=120,DBC=DCB=30ABC+DBC=ACB+DCB=60+30=90,MBD=ECD=90,在MBD与ECD中, ,MBDECD(SAS),MD=DE,BDM=CDEMDN =60,BDC=120,CDE+NDC =BDM+NDC=120-60=60,即:MDN =NDE=60,在DMN与DE
21、N中, ,DMNDEN(SAS),MN=NE=CE+NC=BM+NC(2)如图中,结论:MN=NCBM理由:在CA上截取CE=BMABC是正三角形,ACB=ABC=60,又BD=CD,BDC=120,BCD=CBD=30,MBD=DCE=90,在BMD和CED中 ,BMDCED(SAS),DM= DE,BDM=CDEMDN =60,BDC=120,NDE=BDC-(BDN+CDE)=BDC-(BDN+BDM)=BDC-MDN=120-60=60,即:MDN =NDE=60,在MDN和EDN中 ,MDNEDN(SAS),MN =NE=NCCE=NCBM【点睛】此题考查了全等三角形的判定与性质、等
22、边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题8(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接C解析:(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(SSS),可得结论;结论:PC=2PA想办法证明DPB=3
23、0,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,CB=CA,CD=CP,ACB=DCP=60,BCD=ACP,在BCD和ACP中,BCDACP(SAS),BD=AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CKAPPM,APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=CPK=x,则BDP=90-x,APC=CDB,90+x=
24、60+90-x,x=30,DPB=30,PBD=90,PD=2BD,PC=PD,BD=PA,PC=2PA【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题9(1) (2)16(3)见解析;见解析【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,解析:(1) (2)16(3)见解析;见解析【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;(2)过A作,交CB的延长线于F,求出四边
25、形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,求出,求出,代入求解即可;(3)记面积为,则,根据已知条件可得,进而可得,得出 由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论(1)根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形,故答案为:(2)如图,过A作,交CB的延长线于F, 四边形AFCE是矩形则 四边形AFCE是正方形, 即四边形ABCD的面积为16(3)记,如图:作, AMAD四边形AMND为平行四边形ADMNADBCADBC又ADABBD平分如图:又【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键