资源描述
人教版八年级上册压轴题数学综合试题含解析(一)
1.操作发现:如图1,D是等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,易证AF=BD(不需要证明);
类比猜想:①如图2,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。
深入探究:②如图3,当动点D在等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF,BF′你能发现AF,BF′与AB有何数量关系,并证明你发现的结论。
③如图4,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图3相同,猜想AF,BF′与AB在上题②中的结论是否仍然成立,若不成立,请给出你的结论并证明。
2.(初步探索)(1)如图:在四边形中,,,、分别是、上的点,且,探究图中、、之间的数量关系.
(1)(1)小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是_____________;
(2)(灵活运用)(2)如图2,若在四边形中,,,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;
3.(1)模型:如图1,在中,平分,,,求证:.
(2)模型应用:如图2,平分交的延长线于点,求证:.
(3)类比应用:如图3,平分,,,求证:.
4.阅读下列材料,完成相应任务.
数学活动课上,老师提出了如下问题:
如图1,已知中,是边上的中线.
求证:.
智慧小组的证法如下:
证明:如图2,延长至,使,
∵是边上的中线∴
在和中
∴(依据一)∴
在中,(依据二)
∴.
任务一:上述证明过程中的“依据1”和“依据2”分别是指:
依据1:______________________________________________;
依据2:______________________________________________.
归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.
任务二:如图3,,,则的取值范围是_____________;
任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由.
5.请按照研究问题的步骤依次完成任务.
【问题背景】
(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D.
【简单应用】
(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)
【问题探究】
(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ;
【拓展延伸】
(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ;
(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 .
6.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.
(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;
(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).
7.△ABC、△DPC都是等边三角形.
(1)如图1,求证:AP=BD;
(2)如图2,点P在△ABC内,M为AC的中点,连PM、PA、PB,若PA⊥PM,且PB=2PM.
①求证:BP⊥BD;
②判断PC与PA的数量关系并证明.
8.我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”.
(1)如下:①平行四边形,②矩形,③菱形,④正方形,一定是“菠菜四边形”的是________(填序号);
(2)如图1,四边形ABCD为“菠菜四边形”,且∠BAD=∠BCD=90°,AD=AB,AE⊥CD于点E,若AE=4,求四边形ABCD的面积;
(3)①如图2,四边形ABCD为“菠菜四边形”,且AB=AD,记四边形ABCD,△BOC,△AOD的面积依次为S,,,若.求证:ADBC;
②在①的条件下,延长BA、CD交于点E,记BC=m,DC=n,求证:.
【参考答案】
2.①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解.
【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD;
深入探究:②AF+BF′=
解析:①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解.
【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD;
深入探究:②AF+BF′=AB,利用全等三角形△BCD≌△ACF(SAS)的对应边BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,所以AF+BF′=AB;
③结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACD(SAS),则BF′=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′.
【详解】解:类比猜想:①如图2中,
∵△ABC是等边三角形(已知),
∴BC=AC,∠BCA=60°(等边三角形的性质);
同理知,DC=CF,∠DCF=60°;
∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF;
在△BCD和△ACF中,
∴△BCD≌△ACF(SAS),
∴BD=AF(全等三角形的对应边相等);
深入探究:②如图示
AF+BF′=AB;
证明如下:由①条件可知:∠BCA-∠DCA=∠DCF-∠DCA,即∠BCD=∠ACF,
∴同理可证△BCD≌△ACF(SAS),则BD=AF;
同理△BCF′≌△ACD(SAS),则BF′=AD,
∴AF+BF′=BD+AD=AB;
③结论不成立.新的结论是AF=AB+BF′;
如图示:
证明如下:
∵等边△DCF和等边△DCF′,由①同理可知:
在△BCF′和△ACD中,
∴△BCF′≌△ACD(SAS),
∴BF′=AD(全等三角形的对应边相等);
又由②知,AF=BD;
∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.
【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
3.(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;
(2)(灵活运用)成立,理由见解析
【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠D
解析:(1)(初步探索)结论:∠BAE+∠FAD=∠EAF;
(2)(灵活运用)成立,理由见解析
【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论;
(2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.
(1)
解:∠BAE+∠FAD=∠EAF.
理由:如图1,延长FD到点G,使DG=BE,连接AG,
∵,
∴,
∵DG=BE,,
∴△ABE≌△ADG,
∴∠BAE=∠DAG,AE=AG,
∵EF=BE+FD,DG=BE,
∴,且AE=AG,AF=AF,
∴△AEF≌△AGF,
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.
故答案为:∠BAE+∠FAD=∠EAF;
(2)
如图2,延长FD到点G,使DG=BE,连接AG,
∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,
∴∠B=∠ADG,
又∵AB=AD,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AE=AG,
∵EF=BE+FD=DG+FD=GF,AF=AF,
∴△AEF≌△AGF(SSS),
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF
【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.
4.(1)证明见解析;(2)证明见解析;(3)证明见解析;
【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC;
(2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而
解析:(1)证明见解析;(2)证明见解析;(3)证明见解析;
【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC;
(2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出,,即可求解;
(3)延长BE至M,使EM=DC,连接AM,根据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即,即可得出答案;
【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC,
∴DE=DF,
∵ ,,
∴:=AB:AC;
(2)如图,在AB上取点E,使得AE=AC,连接DE
又∵ AD平分∠CAE,
∴ ∠CAD=∠DAE,
在△ACD和△AED中,
,
∴△ACD≌△AED(SAS),
∴CD=DE且∠ADC=∠ADE,
∴ ,
∴ ,
∴AB:AC=BD:CD;
(3)如图延长BE至M,使EM=DC,连接AM,
∵ ∠D+∠AEB=180°,
又∵∠AEB+∠AEM=180°,
∴∠D=∠AEM,
在△ADC与△AEM中,
,
∴△ADC≌△AEM(SAS),
∴∠DAC=∠EAM=∠BAE,AC=AM,
∴AE为∠BAM的角平分线,
故 ,
∴BE:CD=AB:AC;
【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;
5.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判
解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判定方法判断即可;
依据2:根据三角形三边关系判断;
任务二:可根据任务一的方法直接证明即可;
任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可.
【详解】解:任务一:
依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);
依据2:三角形两边的和大于第三边.
任务二:
任务三:EF=2AD.理由如下:
如图延长AD至G,使DG=AD,
∵AD是BC边上的中线
∴BD=CD
在△ABD和△CGD中
∴△ABD≌△CGD
∴AB=CG,∠ABD=∠GCD
又∵AB=AE
∴AE=CG
在△ABC中,∠ABC+∠BAC+∠ACB=180°,
∴∠GCD+∠BAC+∠ACB=180°
又∵∠BAE=90°,∠CAF=90°
∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180°
∴∠EAF=∠GCD
在△EAF和△GCA中
∴△EAF≌△GCA
∴EF=AG
∴EF=2AD.
【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键.
6.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.
【分析】(1)根据三角形内角和定理即可证明;
(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方
解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.
【分析】(1)根据三角形内角和定理即可证明;
(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;
(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;
(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;
(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=.
【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,
在△COD中,∠C+∠D+∠COD=180°,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,
∴∠1=∠2,∠3=∠4,
由(1)的结论得:,
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,
∴∠P=(∠B+∠D)=23°;
(3)解:如图3,
∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴∠PAD=180°-∠2,∠PCD=180°-∠3,
∵∠P+(180°-∠1)=∠D+(180°-∠3),
∠P+∠1=∠B+∠4,
∴2∠P=∠B+∠D,
∴∠P=(∠B+∠D)=×(36°+16°)=26°;
故答案为:26°;
(4)由题意可得:∠B+∠CAB=∠C+∠BDC,
即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,
∠B+∠BAP=∠P+∠PDB,
即y+∠BAP=∠P+∠PDB,
即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),
即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),
∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB
= y+(∠CAB-∠CDB)
=y+(x-y)
=
故答案为:∠P=;
(5)由题意可得:∠B+∠BAD=∠D+∠BCD,
∠DAP+∠P=∠PCD+∠D,
∴∠B-∠D=∠BCD-∠BAD,
∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠BAP=∠DAP,∠PCE=∠PCB,
∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,
∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,
∴∠P=90°+∠BCD-∠BAD +∠D
=90°+(∠BCD-∠BAD)+∠D
=90°+(∠B-∠D)+∠D
=,
故答案为:∠P=.
【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.
7.(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B
解析:(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.
(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.
【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.
∵△BDC为等腰三角形,△ABC为等边三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD与△ECD中,
∵ ,
∴△MBD≌△ECD(SAS),
∴MD=DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△DMN与△DEN中,
∵ ,
∴△DMN≌△DEN(SAS),
∴MN=NE=CE+NC=BM+NC.
(2)如图②中,结论:MN=NC﹣BM.
理由:在CA上截取CE=BM.
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,
∴∠BCD=∠CBD=30°,
∴∠MBD=∠DCE=90°,
在△BMD和△CED中
∵ ,
∴△BMD≌△CED(SAS),
∴DM= DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△MDN和△EDN中
∵ ,
∴△MDN≌△EDN(SAS),
∴MN =NE=NC﹣CE=NC﹣BM.
【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
8.(1)证明过程见解析;
(2)①证明过程见解析;②PC=2PA,理由见解析.
【分析】(1)证明△BCD≌△ACP(SAS),可得结论;
(2)①如图2中,延长PM到K,使得MK=PM,连接C
解析:(1)证明过程见解析;
(2)①证明过程见解析;②PC=2PA,理由见解析.
【分析】(1)证明△BCD≌△ACP(SAS),可得结论;
(2)①如图2中,延长PM到K,使得MK=PM,连接CK.证明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再证明△PDB≌△PCK(SSS),可得结论;
②结论:PC=2PA.想办法证明∠DPB=30°,可得结论.
(1)证明:如图1中,∵△ABC,△CDP都是等边三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP;
(2)证明:如图2中,延长PM到K,使得MK=PM,连接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可证△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:结论:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,设∠DPB=∠CPK=x,则∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA.
【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30°角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题.
9.(1)③ ④
(2)16
(3)①见解析;②见解析
【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;
(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,
解析:(1)③ ④
(2)16
(3)①见解析;②见解析
【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;
(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,,求出,求出,代入求解即可;
(3)记面积为,则,,根据已知条件可得,进而可得,得出
由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论.
(1)
根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形,
故答案为:③④
(2)
如图,过A作,交CB的延长线于F,
∴ 四边形AFCE是矩形
则
四边形AFCE是正方形,
即四边形ABCD的面积为16
(3)
①记,
∴
∵
∴
∴
∵
∴
∴
∴
∴
如图:作,
∴
∴ AMAD
∴四边形AMND为平行四边形
∴ADMN
∴ADBC
②∵ADBC
∴
又∵AD=AB
∴
∴
∴BD平分
如图:
∵
∴
∴
又∵
∴
∴
【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键.
展开阅读全文