资源描述
2024年人教版七7年级下册数学期末质量监测题(附答案)
一、选择题
1.的平方根是()
A. B. C. D.
2.下列运动中,属于平移的是( )
A.冷水加热过程中,小气泡上升成为大气泡 B.急刹车时汽车在地面上的滑动
C.随手抛出的彩球运动 D.随风飘动的风筝在空中的运动
3.在平面直角坐标系中,点A(m,n)经过平移后得到的对应点A′(m+3,n﹣4)在第二象限,则点A所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列语句中:①同角的补角相等;②雪是白的;③画;④他是小张吗?⑤两直线相交只有一个交点.其中是命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.将两张长方形纸片按如图所示方式摆放,使其中一张长方形纸片的两个顶点恰好落在另一张长方形纸片的两条边上,则∠1+∠2的度数为( )
A.120° B.110° C.100° D.90°
6.下列结论正确的是( )
A.的平方根是 B.没有立方根
C.立方根等于本身的数是0 D.
7.如图,已知,平分,,则的度数是( )
A. B. C. D.
8.在平面直角坐标系xOy中,对于点,我们把点叫做点P的伴随点,已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得点A1,A2,A3,…,,…,若点的坐标为,则点A2021的坐标为( )
A. B. C. D.
九、填空题
9.的算术平方根是___.
十、填空题
10.在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.
十一、填空题
11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2
十二、填空题
12.如图,AB∥DE,AD⊥AB,AE平分∠BAC交BC于点F,如果∠CAD=24°,则∠E=___°.
十三、填空题
13.如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_______.
十四、填空题
14.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____.
十五、填空题
15.在平面直角坐标系中,若在轴上,则线段长度为________.
十六、填空题
16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4…表示,则顶点A2021的坐标是________.
十七、解答题
17.计算:
(1)利用平方根意义求x值:
(2)
十八、解答题
18.求满足下列各式的未知数.
(1).
(2).
十九、解答题
19.请补全推理依据:如图,已知:,,求证:.
证明:
∵(已知)
∴( )
∴( )
又∵(已知)
∴( )
∴( )
∴( )
二十、解答题
20.在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(-3,3),C(-3,0).
(1)在平面直角坐标系中,描出O,A,B,C四点;
(2)依次连接OA,AB,BC,CO后,得到图形的形状是___________.
二十一、解答题
21.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分;
(1)求a+b+c的值;
(2)求3a﹣b+c的平方根.
二十二、解答题
22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
二十三、解答题
23.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,且是直角三角形,,操作发现:
(1)如图1.若,求的度数;
(2)如图2,若的度数不确定,同学们把直线向上平移,并把的位置改变,发现,请说明理由.
(3)如图3,若∠A=30°,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.
二十四、解答题
24.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.
(1)①如图1,∠DPC= 度.
②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°旋转360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.
(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.
二十五、解答题
25.小明在学习过程中,对教材中的一个有趣问题做如下探究:
(习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:;
(变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;
(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.
【参考答案】
一、选择题
1.A
解析:A
【分析】
如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.
【详解】
解:的平方根是.
故选A.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
2.B
【详解】
解:A、气泡在上升的过程中变大,不属于平移;
B、急刹车时汽车在地面上的滑动属于平移;
C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D、随风飘动的树叶在空中的运动,
解析:B
【详解】
解:A、气泡在上升的过程中变大,不属于平移;
B、急刹车时汽车在地面上的滑动属于平移;
C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;
D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.
故选B.
【点睛】
此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.B
【分析】
构建不等式求出m,n的范围可得结论.
【详解】
解:由题意,,
解得:,
∴A(m,n)在第二象限,
故选:B.
【点睛】
此题主要考查坐标与图形变化-平移.解题的关键是理解题意,学会构建不等式解决问题.
4.C
【分析】
根据命题的定义分别对各语句进行判断.
【详解】
解:“同角的补角相等”是命题,“雪是白的”是命题;“画∠AOB=Rt∠”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题.
故选:C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
5.D
【分析】
过E作EF∥CD,根据平行线的性质可得∠1=∠BEF,∠2=∠DEF, 再由∠BED=90°即可解答.
【详解】
解:过E作EF∥CD,
∵AB∥CD,
∴EF∥CD∥AB,
∴∠1=∠BEF,∠2=∠DEF,
∵∠BEF+∠DEF=∠BED=90°,
∴∠1+∠2=90°,
故选:D.
【点睛】
本题考查平行线的判定与性质,熟练掌握平行线的性质是解答的关键.
6.D
【分析】
根据平方根与立方根的性质逐项判断即可得.
【详解】
A、,8的平方根是,此项错误;
B、,此项错误;
C、立方根等于本身的数有,此项错误;
D、,
,此项正确;
故选:D.
【点睛】
本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键.
7.D
【分析】
由题意易得,则有,然后根据平行线的性质可求解.
【详解】
解:∵,,
∴,
∵平分,
∴,
∴,
∵,
∴;
故选D.
【点睛】
本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.
8.C
【分析】
根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.
【详解】
解:∵点的坐标为,
∴点的伴随点的坐标为,即
解析:C
【分析】
根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.
【详解】
解:∵点的坐标为,
∴点的伴随点的坐标为,即 ,
同理得:
∴每4个点为一个循环组依次循环,
∵,
∴A2021的坐标与的坐标相同,
即A2021的坐标为,
故选:C.
【点睛】
本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.
九、填空题
9.【分析】
直接利用算术平方根的定义计算得出答案.
【详解】
解:的算术平方根是:.
故答案为:.
【点睛】
本题主要考查了算术平方根,正确掌握相关定义是解题关键.
解析:
【分析】
直接利用算术平方根的定义计算得出答案.
【详解】
解:的算术平方根是:.
故答案为:.
【点睛】
本题主要考查了算术平方根,正确掌握相关定义是解题关键.
十、填空题
10.(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点
解析:(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点睛】
本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.
十一、填空题
11.6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关
解析:6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关键.
十二、填空题
12.33
【分析】
由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.
【详解】
解:∵AD⊥AB,
∴∠BAD=90°,
∵∠C
解析:33
【分析】
由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.
【详解】
解:∵AD⊥AB,
∴∠BAD=90°,
∵∠CAD=24°,
∴∠BAC=66°,
∵AE平分∠BAC,
∴∠BAE=∠CAE=33°,
∵AB∥DE,
∴∠E=∠BAE=33°,
故答案为33.
【点睛】
本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.
十三、填空题
13.70
【分析】
由题意易图可得,由折叠的性质可得,然后问题可求解.
【详解】
解:由长方形可得:,
∵,
∴,
由折叠可得,
∴;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟
解析:70
【分析】
由题意易图可得,由折叠的性质可得,然后问题可求解.
【详解】
解:由长方形可得:,
∵,
∴,
由折叠可得,
∴;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.
十四、填空题
14.20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的
解析:20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的规律为:分子为,分母为
归纳类推得:第n个等式为(n为正整数)
当时,这个等式为,即
故答案为:.
【点睛】
本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.
十五、填空题
15.5
【分析】
先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案.
【详解】
∵在轴上,
∴横坐标为0,即,
解得:,
故,
∴线段长度为,
故答案为:5.
【点睛】
本题只要考查
解析:5
【分析】
先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案.
【详解】
∵在轴上,
∴横坐标为0,即,
解得:,
故,
∴线段长度为,
故答案为:5.
【点睛】
本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.
十六、填空题
16.(-506,-506)
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A
解析:(-506,-506)
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论.
【详解】
解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…,
∴A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),
∵2021=505×4+1,
∴A2021(-506,-506),
故答案为:(-506,-506).
【点睛】
本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键.
十七、解答题
17.(1)或 (2)
【分析】
(1)由平方根的定义可得答案,
(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.
【详解】
解:(1) ,
是的平方根,
或
(2)
【点睛
解析:(1)或 (2)
【分析】
(1)由平方根的定义可得答案,
(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.
【详解】
解:(1) ,
是的平方根,
或
(2)
【点睛】
本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键.
十八、解答题
18.(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
解析:(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
【点睛】
本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.
十九、解答题
19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据平行线的判定定理以及性质定理证明即可.
【详解】
证明:∵∠1+∠2=180
解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据平行线的判定定理以及性质定理证明即可.
【详解】
证明:∵∠1+∠2=180°(已知),
∴AD∥EF(同旁内角互补,两直线平行),
∴∠3=∠D(两直线平行,同位角相等),
又∵∠3=∠A(已知),
∴∠D=∠A(等量代换),,
∴AB∥CD(内错角相等,两直线平行),
∴∠B=∠C(两直线平行,内错角相等).
故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.
【点睛】
本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.
二十、解答题
20.(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
解析:(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.
二十一、解答题
21.(1)-33;(2)
【分析】
(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;
(2)分别将a,b,c的值代入3a-b+c,可
解析:(1)-33;(2)
【分析】
(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;
(2)分别将a,b,c的值代入3a-b+c,可解答.
【详解】
解:(1)∵某正数的两个平方根分别是3a-14和a+2,
∴(3a-14)+(a+2)=0,
∴a=3,
又∵b+11的立方根为-3,
∴b+11=(-3)3=-27,
∴b=-38,
又∵,
∴,
又∵c是的整数部分,
∴c=2;
∴a+b+c=3+(-38)+2=-33;
(2)当a=3,b=-38,c=2时,
3a-b+c=3×3-(-38)+2=49,
∴3a-b+c的平方根是±7.
【点睛】
本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.
二十二、解答题
22.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
二十三、解答题
23.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°
解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;
(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)∵∠1=48°,∠BCA=90°,
∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,
∵a∥b,
∴∠2=∠3=42°;
(2)理由如下:
过点B作BD∥a.如图2所示:
则∠2+∠ABD=180°,
∵a∥b,
∴b∥BD,
∴∠1=∠DBC,
∴∠ABD=∠ABC-∠DBC=60°-∠1,
∴∠2+60°-∠1=180°,
∴∠2-∠1=120°;
(3)∠1=∠2,理由如下:
过点C 作CP∥a,如图3所示:
∵AC平分∠BAM
∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,
又∵a∥b,
∴CP∥b,∠1=∠BAM=60°,
∴∠PCA=∠CAM=30°,
∴∠BCP=∠BCA-∠PCA=90°-30°=60°,
又∵CP∥a,
∴∠2=∠BCP=60°,
∴∠1=∠2.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
二十四、解答题
24.(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和
解析:(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同;
(2)分两种情况讨论:当在上方时,当在下方时,①分别用含的代数式表示,从而可得的值;②分别用含的代数式表示,得到是一个含的代数式,从而可得答案.
【详解】
解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,
∴∠DPC=180﹣30﹣60=90°,
故答案为90;
②如图1﹣1,当BD∥PC时,
∵PC∥BD,∠DBP=90°,
∴∠CPN=∠DBP=90°,
∵∠CPA=60°,
∴∠APN=30°,
∵转速为10°/秒,
∴旋转时间为3秒;
如图1﹣2,当PC∥BD时,
∵∠PBD=90°,
∴∠CPB=∠DBP=90°,
∵∠CPA=60°,
∴∠APM=30°,
∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,
∵转速为10°/秒,
∴旋转时间为21秒,
如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,
∵PA∥BD,
∴∠DBP=∠APN=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°,
∵转速为10°/秒,
∴旋转时间为9秒,
如图1﹣4,当PA∥BD时,
∵∠DPB=∠ACP=30°,
∴AC∥BP,
∵PA∥BD,
∴∠DBP=∠BPA=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,
∵转速为10°/秒,
∴旋转时间为27秒,
如图1﹣5,当AC∥DP时,
∵AC∥DP,
∴∠C=∠DPC=30°,
∴∠APN=180°﹣30°﹣30°﹣60°=60°,
∴三角板PAC绕点P逆时针旋转的角度为60°,
∵转速为10°/秒,
∴旋转时间为6秒,
如图1﹣6,当时,
∴三角板PAC绕点P逆时针旋转的角度为
∵转速为10°/秒,
∴旋转时间为秒,
如图1﹣7,当AC∥BD时,
∵AC∥BD,
∴∠DBP=∠BAC=90°,
∴点A在MN上,
∴三角板PAC绕点P逆时针旋转的角度为180°,
∵转速为10°/秒,
∴旋转时间为18秒,
当时,如图1-3,1-4,旋转时间分别为:,
综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;
(2)如图,当在上方时,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.
∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,
∴
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
当在下方时,如图,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM= ∠APN=3t.
∴∠CPD=
∴
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
综上:①正确,②错误.
【点睛】
本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.
二十五、解答题
25.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.
【分析】
[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可
解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.
【分析】
[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明;
[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=;
[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°.
【详解】
[习题回顾]证明:∵∠ACB=90°,CD是高,
∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,
∴∠B=∠ACD,
∵AE是角平分线,
∴∠CAF=∠DAF,
∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,
∴∠CEF=∠CFE;
[变式思考]相等,理由如下:
证明:∵AF为∠BAG的角平分线,
∴∠GAF=∠DAF,
∵∠CAE=∠GAF,
∴∠CAE=∠DAF,
∵CD为AB边上的高,∠ACB=90°,
∴∠ADC=90°,
∴∠ADF=∠ACE=90°,
∴∠DAF+∠F=90°,∠E+∠CAE=90°,
∴∠CEF=∠CFE;
[探究延伸]∠M+∠CFE=90°,
证明:∵C、A、G三点共线 AE、AN为角平分线,
∴∠EAN=90°,
又∵∠GAN=∠CAM,
∴∠M+∠CEF=90°,
∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,
∴∠CEF=∠CFE,
∴∠M+∠CFE=90°.
【点睛】
本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.
展开阅读全文