资源描述
人教版七年级数学下册期末解答题复习试卷及答案
一、解答题
1.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是 ;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?
2.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)
3.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
4.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长
5.有一块正方形钢板,面积为16平方米.
(1)求正方形钢板的边长.
(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据:,).
二、解答题
6.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.
(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为 ;
(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.
7.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.
(1)= ;
(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;
(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.
8.阅读下面材料:
小亮同学遇到这样一个问题:
已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED.
求证:∠BED=∠B+∠D.
(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.
证明:过点E作EFAB,
则有∠BEF= .
∵ABCD,
∴ ,
∴∠FED= .
∴∠BED=∠BEF+∠FED=∠B+∠D.
(2)请你参考小亮思考问题的方法,解决问题:如图乙,
已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.
①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;
②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).
9.已知直线,点P为直线、所确定的平面内的一点.
(1)如图1,直接写出、、之间的数量关系 ;
(2)如图2,写出、、之间的数量关系,并证明;
(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数.
10.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.
(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,
①试判断PM与MN的位置关系,并说明理由;
②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)
(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)
三、解答题
11.已知,点为平面内一点,于.
(1)如图1,点在两条平行线外,则与之间的数量关系为______;
(2)点在两条平行线之间,过点作于点.
①如图2,说明成立的理由;
②如图3,平分交于点平分交于点.若,求的度数.
12.如图1,,E是、之间的一点.
(1)判定,与之间的数量关系,并证明你的结论;
(2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系;
(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小.
13.如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3°的速度沿顺时针方向旋转一周.
(1)几秒后与重合?
(2)如图2,经过秒后,,求此时的值.
(3)若三角板在转动的同时,射线也绕点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由.
(4)在(3)的条件下,求经过多长时间平分?请画图并说明理由.
14.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分.
(1)求的度数.
(2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒.
①在旋转过程中,若边,求的值;
②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值.
15.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且
(1)求的度数.
(2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使时,求的度数.
四、解答题
16.如图,在中,是高,是角平分线,,.
()求、和的度数.
()若图形发生了变化,已知的两个角度数改为:当,,则__________.
当,时,则__________.
当,时,则__________.
当,时,则__________.
()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论.
17.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,
如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
18.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.
(1)若DE//AB,则∠EAC= ;
(2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F.
①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;
②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.
19.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
20.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.
(1)l2与l3的位置关系是 ;
(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °;
(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;
(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.
【参考答案】
一、解答题
1.(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小
解析:(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可.
【详解】
解:(1)由题意得,大正方形的面积为200+200=400cm2,
∴边长为: ;
根据题意设长方形长为 cm,宽为 cm,
由题:
则
长为
无法裁出这样的长方形.
【点睛】
本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.
2.(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(
解析:(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(1)正方形工料的边长为分米;
(2)设长方形的长为4a分米,则宽为3a分米.
则,
解得:,
长为,宽为
∴满足要求.
【点睛】
本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.
3.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
4.(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正
解析:(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.
【详解】
试题分析:
解:(1)拼成的正方形的面积与原面积相等1×1×5=5,
边长为,
如图(1)
(2)斜边长=,
故点A表示的数为:;点A表示的相反数为:
(3)能,如图
拼成的正方形的面积与原面积相等1×1×10=10,边长为.
考点:1.作图—应用与设计作图;2.图形的剪拼.
5.(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解
解析:(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解:(1)正方形的面积是16平方米,
正方形钢板的边长是米;
(2)设长方形的长宽分别为米、米,
则,
,
,
,,
长方形长是米,而正方形的边长为4米,所以李师傅不能办到.
【点睛】
本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.
二、解答题
6.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′
【分析】
(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根
解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′
【分析】
(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;
(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.
【详解】
解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,
过O作OE∥AB,
∵AB∥CD,
∴AB∥OE∥CD,
∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,
∴∠POQ=90°,
∴PB′⊥QC′,
故答案为:PB′⊥QC′;
(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠PEC=∠CQC′,
即12t=45+3t,
解得,t=5;
②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠BEQ=∠CQC′,
即12t﹣180=45+3t,
解得,t=25;
③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠BEQ=∠CQC′,
即12t﹣360=45+3t,
解得,t=45;
综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.
【点睛】
本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.
7.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;
(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;
(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.
【详解】
解:(1)如图:过O作OP//MN,
∵MN//GHl
∴MN//OP//GH
∴∠NAO+∠POA=180°,∠POB+∠OBH=180°
∴∠NAO+∠AOB+∠OBH=360°
∵∠NAO=116°,∠OBH=144°
∴∠AOB=360°-116°-144°=100°;
(2)分别延长AC、CD交GH于点E、F,
∵AC平分且,
∴,
又∵MN//GH,
∴;
∵,
∵BD平分,
∴,
又∵
∴;
∴;
(3)设FB交MN于K,
∵,则;
∴
∵,
∴,,
在△FAK中,,
∴,
∴.
经检验:是原方程的根,且符合题意.
【点睛】
本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.
8.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,
解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;
②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.
【详解】
解:(1)过点E作EF∥AB,
则有∠BEF=∠B,
∵AB∥CD,
∴EF∥CD,
∴∠FED=∠D,
∴∠BED=∠BEF+∠FED=∠B+∠D;
故答案为:∠B;EF;CD;∠D;
(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=∠EBA+∠EDC.
即∠BED=∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,
∴∠BED=∠EBA+∠EDC=65°.
答:∠BED的度数为65°;
②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.
∴∠BEF=180°﹣∠EBA,
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.
即∠BED=180°﹣∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=,∠EDC=∠ADC=,
∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.
答:∠BED的度数为180°﹣.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
9.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360
解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;
(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.
【详解】
解:(1)∠A+∠C+∠APC=360°
如图1所示,过点P作PQ∥AB,
∴∠A+∠APQ=180°,
∵AB∥CD,
∴PQ∥CD,
∴∠C+∠CPQ=180°,
∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;
(2)∠APC=∠A+∠C,
如图2,作PQ∥AB,
∴∠A=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠C=∠CPQ,
∵∠APC=∠APQ-∠CPQ,
∴∠APC=∠A-∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,
∵∠APC=30°,∠PAB=140°,
∴∠PCD=110°,
∵AB∥CD,
∴∠PQB=∠PCD=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵∠PEG=∠PEF,
∴∠PEG=∠FEG,
∵EH平分∠BEG,
∴∠GEH=∠BEG,
∴∠PEH=∠PEG-∠GEH
=∠FEG-∠BEG
=∠BEF
=55°.
【点睛】
此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
10.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条
解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;
②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;
(2)分三种情况讨论,利用平行线的性质即可解决.
【详解】
解:(1)①PM⊥MN,理由见解析:
∵AB//CD,
∴∠APM=∠PMQ,
∵∠APM+∠QMN=90°,
∴∠PMQ +∠QMN=90°,
∴PM⊥MN;
②过点N作NH∥CD,
∵AB//CD,
∴AB// NH∥CD,
∴∠QMN=∠MNH,∠EPA=∠ENH,
∵PA平分∠EPM,
∴∠EPA=∠ MPA,
∵∠APM+∠QMN=90°,
∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,
∴∠MNQ +∠MNH +∠MNH=90°,
∵∠MNQ=20°,
∴∠MNH=35°,
∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,
∴∠EPB=180°-55°=125°,
∴∠EPB的度数为125°;
(2)当点M,N分别在射线QC,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,
∴∠APM +∠QMN=90°;
当点M,N分别在射线QC,线段PQ上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMN=90°,∠APM=∠PMQ,
∴∠PMQ -∠QMN=90°,
∴∠APM -∠QMN=90°;
当点M,N分别在射线QD,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,
∴∠APM+90°-∠QMN=180°,
∴∠APM -∠QMN=90°;
综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.
三、解答题
11.(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥
解析:(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
【详解】
解:(1)如图1,AM与BC的交点记作点O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°;
(2)①如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥DM,
∴∠C=∠CBG,
∠ABD=∠C;
②如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:
2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】
本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.
12.(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,
解析:(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED;
(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数.
【详解】
解:(1)
理由如下:
作,如图1,
,
.
,,
;
(2)如图2,由(1)的结论得,
、的两条平分线交于点F,
,,
,
,
;
(3)由(1)的结论得,
而射线沿翻折交于点G,
,
,
,
,
.
【点睛】
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
13.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;
(3)设∠AON=3
解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;
(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;
(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.
【详解】
解:(1)∵30÷3=10,
∴10秒后ON与OC重合;
(2)∵MN∥AB
∴∠BOM=∠M=30°,
∵∠AON+∠BOM=90°,
∴∠AON=60°,
∴t=60÷3=20
∴经过t秒后,MN∥AB,t=20秒.
(3)如图3所示:
∵∠AON+∠BOM=90°,∠BOC=∠BOM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON=3t,则∠AOC=30°+6t,
∵OC与OM重合,
∵∠AOC+∠BOC=180°,
可得:(30°+6t)+(90°-3t)=180°,
解得:t=20秒;
即经过20秒时间OC与OM重合;
(4)如图4所示:
∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,
∴∠BOC=∠COM=∠BOM=(90°-3t),
由题意得:180°-(30°+6t)=( 90°-3t),
解得:t=秒,
即经过秒OC平分∠MOB.
【点睛】
此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
14.(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当
解析:(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.
【详解】
解:(1)如图①中,
∵∠ACB=30°,
∴∠ACN=180°-∠ACB=150°,
∵CE平分∠ACN,
∴∠ECN=∠ACN=75°,
∵PQ∥MN,
∴∠QEC+∠ECN=180°,
∴∠QEC=180°-75°=105°,
∴∠DEQ=∠QEC-∠CED=105°-45°=60°.
(2)①如图②中,
∵BG∥CD,
∴∠GBC=∠DCN,
∵∠DCN=∠ECN-∠ECD=75°-45°=30°,
∴∠GBC=30°,
∴5t=30,
∴t=6s.
∴在旋转过程中,若边BG∥CD,t的值为6s.
②如图③中,当BG∥HK时,延长KH交MN于R.
∵BG∥KR,
∴∠GBN=∠KRN,
∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,
∴∠KRN=90°-(60°+4t)=30°-4t,
∴5t=30°-4t,
∴t=s.
如图③-1中,当BG∥HK时,延长HK交MN于R.
∵BG∥KR,
∴∠GBN+∠KRM=180°,
∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,
∴∠KRM=90°-(180°-60°-4t)=4t-30°,
∴5t+4t-30°=180°,
∴t=s.
综上所述,满足条件的t的值为s或s.
【点睛】
本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
15.(1);(2)不变化,,理由见解析;(3)
【分析】
(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解
解析:(1);(2)不变化,,理由见解析;(3)
【分析】
(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解;
(3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案.
【详解】
(1)∵BC,BD分别评分和,
∴,
∴
又∵,
∴
∵,
∴
∴;
(2)∵,
∴,
又∵BD平分
∴,
∴;
∴与之间的数量关系保持不变;
(3)∵,
∴
又∵,
∴,
∵
∴
由(1)可得,
∴.
【点睛】
本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.
四、解答题
16.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.
【分析】
(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;
解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.
【分析】
(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;
(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;
(3)按照(2)的方法,将相应的数换成字母即可得出答案.
【详解】
(1)∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
,
.
(2)当,时,
∵,,
∴.
∵平分,
∴.
∵是高,
,
,
;
当,时,
∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
;
当,时,
∵,,
∴.
∵平分,
∴.
∵是高,
,
,
;
当,时
展开阅读全文