资源描述
部编版八年级数学下册期末试卷达标检测(Word版含解析)
一、选择题
1.式子有意义,则x的取值范围是( )
A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣2
2.下列四组线段中,不能作为直角三角形三条边的是( )
A.3,4,5 B.2,2, C.2,5,6 D.5,12,13
3.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是( )
A.AD=BC B.AB=CD C.AD∥BC D.∠A=∠C
4.将80辆环保电动汽车一次充电后行驶里程记录数据,获得如图所示条形统计图,根据统计图所测数据的中位数、众数分别是( )
A.165,160 B.165,165 C.170,165 D.160,165
5.如图,在矩形纸片ABCD中,AB=6,AD=8,折叠该纸片,使得AB边落在对角线AC上,点B落在点F处,折痕为AE,则线段EF的长为( )
A.3 B.4 C.5 D.6
6.如图,将矩形ABCD沿对角线BD折叠,使点C落在F处,BF交AD于点E.若∠BDC=62°,则∠DEF的度数为( )
A.31° B.28° C.62° D.56°
7.如图1,为矩形的边上一点,点从点出发沿折线运动到点停止,点从点出发沿运动到点停止,它们的运动速度都是厘米/秒.现,两点同时出发,设运动时间为(秒),的面积为(cm2),若与的对应关系如图2所示,则矩形的面积是( )
A.cm2 B.72 cm2 C.84 cm2 D.56 cm2
8.甲、乙两位同学住在同一小区,学校与小区相距2700米.一天甲从小区步行出发去学校,12分钟后乙也出发,乙先骑公交自行车,途经学校又骑行一段路到达还车点后,立即步行走回学校.已知步行速度甲比乙每分钟快5米,图中的折线表示甲、乙两人之间的距离y(米)与甲步行时间x(分钟)的函数关系图象.则( )
A.乙骑自行车的速度是180米/分 B.乙到还车点时,甲,乙两人相距850米
C.自行车还车点距离学校300米 D.乙到学校时,甲距离学校200米
二、填空题
9.若式子有意义,则实数a的取值范围是_____________.
10.如图,菱形ABCD的边长为5cm,正方形AECF的面积为18cm2,则菱形的面积为 ___cm2.
11.在中,,,,斜边的长为__________.
12.如图,四边形ABDE是长方形,AC⊥DC于点C,交BD于点F,AE=AC,∠ADE=62°,则∠BAF的度数为___.
13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x之间的函数________.
14.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________使其成为菱形(只填一个即可).
15.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米; ③图中点B的坐标为(,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是 ___.
16.如图,,,,,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则线段的长为________.
三、解答题
17.计算:
(1);
(2)-4;
(3)(-2)(+2)-|-π0|-(-)-1;
(4)(+)÷.
18.如图,在O处的某海防哨所发现在它的北偏东60°方向相距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处,发现B在O的南偏东45°的方向上.问:此时快艇航行了多少米(即AB的长)?
19.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的,请你根据所学的知识回答下列问题:
(1)判断的形状,并说明理由:
(2)求的面积.
20.如图,在矩形AFCG中,BD垂直平分对角线AC,交CG于D,交AF于B,交AC于O.连接AD,BC.
(1)求证:四边形ABCD是菱形;
(2)若E为AB的中点,DE⊥AB,求∠BDC的度数;
21.在数学课外学习活动中,嘉琪遇到一道题:已知,求2a2﹣8a+1的值.他是这样解答的:
∵,
∴.
∴(a﹣2)2=3,即a2﹣4a+4=3.
∴a2﹣4a=﹣1.
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.
请你根据嘉琪的解题过程,解决如下问题:
(1)试化简和;
(2)化简;
(3)若,求4a2﹣8a+1的值.
22.如图1,为美化校园环境,某校计划在一块长为,宽为的长方形空地上修建一条宽为的甬道,余下的部分铺设草坪建成绿地.
(1)甬道的面积为______,绿地的面积为______;(用含的代数式表示)
(2)已知某园林公司修建甬道、绿地的造价(元),(元)与修建面积之间的函数关系图像如图2所示.
①直接写出修建甬道的造价(元)、修建绿地的造价(元)与的关系式;
②如果学校决定由该公司承建此项目,并要求修建的甬道宽度不少于且不超过,那么甬道宽为多少时,修建的甬道和绿地的总造价最低?最低总造价为多少元?
23.共顶点的正方形ABCD与正方形AEFG中,AB=13,AE=5.
(1)如图1,求证:DG=BE;
(2)如图2,连结BF,以BF、BC为一组邻边作平行四边形BCHF.
①连结BH,BG,求的值;
②当四边形BCHF为菱形时,直接写出BH的长.
24.如图,,是直线与坐标轴的交点,直线过点,与轴交于点.
(1)求,,三点的坐标.
(2)当点是的中点时,在轴上找一点,使的和最小,画出点的位置,并求点的坐标.
(3)若点是折线上一动点,是否存在点,使为直角三角形,若存在,直接写出点的坐标;若不存在,请说明理由.
25.如图1,在中,,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;
(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:
①M点的坐标为 .
②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分).
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据二次根式的性质和被开方数大于或等于0,可以求出x的范围.
【详解】
解:根据二次根式的性质,被开方数大于或等于0,
可知:x﹣2≥0,
解得:x≥2.
故选A.
【点睛】
此题主要考查了二次根式的意义的条件.关键是把握二次根式中的被开方数必须是非负数,否则二次根式无意义.
2.C
解析:C
【分析】
分别求出各选项中较小两数的平方和及最大数的平方,比较后即可得出结论.
【详解】
解:A、由于32+42=52,能作为直角三角形的三边长;
B、由于22+22=()2,能作为直角三角形的三边长;
C、由于22+52≠62,不能作为直角三角形的三边长;
D、由于52+122=132,能作为直角三角形的三边长.
故选C.
【点睛】
本题主要考查了勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.
3.A
解析:A
【解析】
【分析】
根据平行四边形的判定方法,逐项判断即可.
【详解】
解:A、当AB∥CD,AD=BC时,四边形ABCD可能为等腰梯形,所以不能证明四边形ABCD为平行四边形;
B、AB∥CD,AB=DC,一组对边分别平行且相等,可证明四边形ABCD为平行四边形;
C、AB∥CD,AD∥BC,两组对边分别平行,可证明四边形ABCD为平行四边形;
D、∵AB∥CD,
∴∠A+∠D=180°,
∵∠A=∠C,
∴∠C+∠D=180°,
∴AD∥BC,
∴四边形ABCD为平行四边形;
故选:A.
【点睛】
本题主要考查平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.
4.B
解析:B
【解析】
【分析】
由中位数和众数的定义结合条形统计图即可得出答案.
【详解】
根据题意有80辆电动汽车为偶数个,根据统计图可知最中间的两个数都为165,故中位数=,
165出现了20次,为最多,即众数为165.
故选:B.
【点睛】
本题考查中位数和众数的定义,从条形统计图中获取必要的信息是解答本题的关键.
5.A
解析:A
【分析】
根据矩形的性质可得BC=AD,∠B=90°,利用勾股定理可求出AC的长,根据折叠的性质可得AF=AB,∠B=∠AFE=90°,BE=EF,在Rt△CEF中利用勾股定理列方程求出EF的长即可得答案.
【详解】
∵四边形ABCD是矩形,AD=8,
∴∠B=90°,BC=AD=8,
∴AC==10,
∵折叠该纸片,使得AB边落在对角线AC上,点B落在点F处,折痕为AE,
∴BE=EF,AF=AB=6,∠AFE=∠B=90°,
∴CF=AC-AF=10﹣6=4,
在Rt△CEF中,由勾股定理得,EF2+CF2=CE2,
∴EF2+CF2=(BC-EF)2,即EF2+42=(8-EF)2,
解得:EF=3,
故选:A.
【点睛】
本题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.
6.D
解析:D
【解析】
【分析】
先利用互余计算出∠BDE=28°,再根据平行线的性质得∠CBD=∠BDE=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DEF的度数,于是得到结论.
【详解】
解:∵四边形ABCD为矩形,
∴AD∥BC,∠ADC=90°,
∵,
∵AD∥BC,
∴∠CBD=∠BDE=28°,
∵矩形ABCD沿对角线BD折叠,
∴∠FBD=∠CBD=28°,
∴∠DEF=∠FBD+∠BDE=28°+28°=56°.
故选:D.
【点睛】
本题考查了矩形的性质,平行线和折叠的性质,综合运用以上性质是解题的关键.
7.B
解析:B
【解析】
【分析】
过点E作EH⊥BC,由三角形面积求得EH=AB=6,由图2知,当x=14时,点P与点D重合,则AD=12,从而可得答案.
【详解】
从函数的图象和运动过程知:当点P运动到点E时,x=10,y=30
即BE=BQ=10,
过点E作EH⊥BC于点H,如图
则
解得:EH=6
∵四边形ABHE是矩形
∴AB=EH=6
在Rt△ABE中,由勾股定理得:
由图2知,当x=14时,点P与点D重合
即BE+ED=14
∴ED=14-BE=4
∴AD=AE+ED=8+4=12
∴矩形ABCD的面积为:12×6=72(厘米2)
故选:B.
【点睛】
本题考查了动点问题的函数图象,三角形的面积,勾股定理,矩形的判定与性质等知识,弄懂动点运动过程、数形结合是解答本题的关键.
8.C
解析:C
【分析】
根据函数图象中的数据可以求得甲步行的速度、乙骑自行车的速度、乙一共所用的时间,从而得出乙步行的速度、自行车还车点与学校的距离,求出乙到还车点时,甲、乙所用的时间,即可得出路程差,根据乙到学校时,所用时间为19分,此时甲所用的时间为31分,则可求出甲距学校的路程.
【详解】
由图可得:
甲步行的速度为:960÷12=80(米/分),
乙骑自行车的速度为:[960+(20-12)×80]÷(20-12)=200(米/分),故A错误;
乙步行的速度为:80-5=75(米/分)
乙一共所用的时间:31-12=19(分)
设自行车还车点距学校x米,则:
解得:x=300.
故C正确;
乙到还车点时,乙所用时间为:(2700+300)÷200=15(分)
乙到还车点时,甲所用时间为:12+15=27(分)
路程差=2700+300-80×27=840(米),故B错误;
乙到学校时,所用时间为19分,而甲所用的时间=12+19=31(分),甲距学校的路程=2700-80×31=220(米),故D错误.
故选C.
【点睛】
本题考查了根据函数图象获取信息,解答本题的关键是明确题意,利用数形结合的思想解答.
二、填空题
9.a≥-2且a≠1
【解析】
【分析】
直接利用二次根式的性质得出a的取值范围.
【详解】
解:∵式子有意义,
∴,,
∴,且;
故答案为:且;
【点睛】
此题主要考查了二次根式的性质,正确掌握二次根式的性质是解题关键.
10.A
解析:24
【解析】
【分析】
由正方形的性质可求AC的长,由勾股定理可求BO的值,可求BD的值,即可求菱形ABCD的面积.
【详解】
解:如图,连接AC,BD交于O,
∵正方形AECF的面积为18cm2,
∴正方形AECF的边长为cm,
∴AC=AE=6(cm),
∴AO=3(cm),
∵四边形ABCD是菱形,
∴AC⊥BD,BO=DO,
∴BO==4(cm),
∴BD=2BO=8(cm),
∴菱形ABCD的面积=AC×BD=24(cm2),
故答案为:24.
【点睛】
本题考查正方形的性质,菱形的性质,勾股定理,熟练运用正方形的性质是本题的关键.
11.B
解析:
【解析】
【分析】
由,得到 利用勾股定理可得答案.
【详解】
解:设BC
,,
,
(舍去),
故答案为:
【点睛】
本题考查的是含角的直角三角形的性质与勾股定理的应用,掌握相关知识点是解题的关键.
12.B
解析:34°
【分析】
由矩形的性质可得∠BAE=∠E=90°,由HL可证Rt△ACD≌Rt△AED,可得∠EAD=∠CAD=28°,即可求解.
【详解】
解:∵四边形ABDE是矩形,
∴∠BAE=∠E=90°,
∵∠ADE=62°,
∴∠EAD=28°,
∵AC⊥CD,
∴∠C=∠E=90°
∵AE=AC,AD=AD,
∴Rt△ACD≌Rt△AED(HL)
∴∠EAD=∠CAD=28°,
∴∠BAF=90°-28°-28°=34°,
故答案为:34°.
【点睛】
本题考查了矩形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.
13.y=2x.
【详解】
试题解析:每瓶的售价是=2(元/瓶),
则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x.
考点:根据实际问题列一次函数关系式.
14.A
解析:AC⊥BC或∠AOB=90°或AB=BC(填一个即可).
【详解】
试题分析:根据菱形的判定定理,已知平行四边形ABCD,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形.
考点:菱形的判定.
15.①③④
【分析】
根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,
解析:①③④
【分析】
根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,根据返回快递车速与货车速度之和乘以返货到相遇时间=75,解方程可判断④.
【详解】
解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,
x=100.
故①正确;
②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,
故②错误;
③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=,点B纵坐标为120﹣60×=75,
故③正确;
④设快递车从乙地返回时的速度为y千米/时,则(y+60)()=75,
y=90,
故④正确.
故答案为①③④.
【点睛】
本题考查一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,掌握一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,一次函数的应用是解题关键.
16.【分析】
根据折叠性质和余角定理可知是等腰直角三角形,是直角三角形,运用勾股定理求出DF的值,最后用勾股定理得出的值.
【详解】
解:根据折叠的性质可知,,,,,
∴;
∵,(三角形外角定理),
解析:
【分析】
根据折叠性质和余角定理可知是等腰直角三角形,是直角三角形,运用勾股定理求出DF的值,最后用勾股定理得出的值.
【详解】
解:根据折叠的性质可知,,,,,
∴;
∵,(三角形外角定理),
(、都是的余角,同角的余角相等),
∴,
∵在中,,
∴,
∴是等腰直角三角形,,
∵和互为补角,
∴,
∴,为直角三角形,
∵,
∴,
∵根据勾股定理求得,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查折叠性质与勾股定理的应用,掌握折叠性质及勾股定理,运用等面积法求出CE的值是解题关键.
三、解答题
17.(1);(2)6;(3)-2;(4)4+2
【分析】
(1)将二次根式化为最简二次根式,然后进行加减运算即可.
(2)将二次根式化为最简二次根式,利用二次根式的混合运算法则求解即可.
(3)利用平方
解析:(1);(2)6;(3)-2;(4)4+2
【分析】
(1)将二次根式化为最简二次根式,然后进行加减运算即可.
(2)将二次根式化为最简二次根式,利用二次根式的混合运算法则求解即可.
(3)利用平方差公式、绝对值性质、负指数幂进行化简,然后计算即可得到答案.
(4)将二次根式化为最简二次根式,然后括号中的每一项分别除以除数,最后计算得到答案.
【详解】
解:(1)原式
.
(2)原式
.
(3)原式=3-4-|-3-1|-(-3)
=-1-4+3
=-2.
(4)原式
.
【点睛】
本题主要是考查了二次根式的混合运算,注意在进行二次根式的运算中,一定先要把二次根式化简成最简二次根式进行计算.
18.快艇航行了(500+500)米.
【分析】
先根据题意得到∠AOE=60°,∠BOF=45°,从而得到∠AOC=30°,∠BOC=45°,再利用含30度角的直角三角形的性质和勾股定理求解即可.
【详
解析:快艇航行了(500+500)米.
【分析】
先根据题意得到∠AOE=60°,∠BOF=45°,从而得到∠AOC=30°,∠BOC=45°,再利用含30度角的直角三角形的性质和勾股定理求解即可.
【详解】
解:如图:在直角△AOC中,∠AOC=30°,OA=1000米,
∴AC=OA=500米,
∴米,
∵∠FOB=45°,
∴∠COB=45°,
∴OC=BC=米
∴AB=500+(米).
答:快艇航行了(500+)米.
【点睛】
本题主要考查了勾股定理,方位角,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.
19.(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据勾股定理得到,,,再根据勾股定理的逆定理即可求解;
(2)用正方形的面积减去3个三角形的面积即可求解.
【详解】
解:(1)是直
解析:(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据勾股定理得到,,,再根据勾股定理的逆定理即可求解;
(2)用正方形的面积减去3个三角形的面积即可求解.
【详解】
解:(1)是直角三角形,理由:
正方形小方格边长为1,
,,.
,
是直角三角形;
(2)的面积,
故的面积为5.
【点睛】
本题考查了勾股定理的逆定理、勾股定理,解题的关键是熟知勾股定理及勾股定理的逆定理.
20.(1)见解析;(2)60°
【分析】
(1)根据垂直平分线的性质得到AD=CD,AB=BC,根据三角形全等得到CD=AB,即可求证;
(2)根据等边三角形的性质求得∠DBA=60°,即可求解.
【详
解析:(1)见解析;(2)60°
【分析】
(1)根据垂直平分线的性质得到AD=CD,AB=BC,根据三角形全等得到CD=AB,即可求证;
(2)根据等边三角形的性质求得∠DBA=60°,即可求解.
【详解】
(1)证明:
∵BD垂直平分AC,
∴OA=OC,AD=CD,AB=BC.
∵四边形AFCG是矩形,
∴CG∥AF,
∴∠CDO=∠ABO,∠DCO=∠BAO,
∴△COD≌△AOB(AAS),
∴CD=AB,
∴AB=BC=CD=DA,
∴四边形ABCD是菱形.
(2)∵E为AB的中点,DE⊥AB,
∴DE垂直平分AB,
∴AD=DB.
又∵AD=AB,
∴△ADB为等边三角形,
∴∠DBA=60°.
∵CD∥AB,
∴∠BDC=∠DBA=60°.
【点睛】
此题考查了菱形的判定,涉及了全等三角形的证明,矩形的性质、垂直平分线的性质等,熟练掌握相关基本性质是解题的关键.
21.(1),;(2);(3)5
【解析】
【分析】
(1)利用分母有理化计算;
(2)先分母有理化,然后合并即可;
(3)先将a的值化简为,进而可得到,两边平方得到,然后利用整体代入的方法计算.
【详解
解析:(1),;(2);(3)5
【解析】
【分析】
(1)利用分母有理化计算;
(2)先分母有理化,然后合并即可;
(3)先将a的值化简为,进而可得到,两边平方得到,然后利用整体代入的方法计算.
【详解】
解:(1),
,
故答案为:,;
(2)原式
;
(3),
,
,
即.
.
.
【点睛】
本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.
22.(1),;(2)①,;②甬道宽为时,修建的甬道和绿地的总造价最低,最低总造价为21300元
【分析】
(1)利用平行四边形面积公式可得甬道面积,用矩形面积减去甬道面积可得绿地的面积;
(2)①用单价
解析:(1),;(2)①,;②甬道宽为时,修建的甬道和绿地的总造价最低,最低总造价为21300元
【分析】
(1)利用平行四边形面积公式可得甬道面积,用矩形面积减去甬道面积可得绿地的面积;
(2)①用单价乘以甬道和绿地面积分别求解可得;
②将甬道和绿地的建造价格相加可得总造价的函数解析式,再根据一次函数性质求解可得.
【详解】
解:(1)甬道的面积为15am2,绿地的面积为(300-15a)m2;
故答案为:15a、(300-15a);
(2)①园林公司修建一平方米的甬道的造价为=80(元),
绿地的造价为=70(元).
W1=80×15a=1200a,
W2=70(300-15a)=-1050a+21000;
②设此项修建项目的总费用为W元,
则W=W1+W2=1200a+(-1050a+21000)=150a+21000,
∵k>0,
∴W随a的增大而增大,
∵2≤a≤5,
∴当a=2时,W有最小值,W最小值=150×2+21000=21300,
答:甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;
【点睛】
本题主要考查了一次函数的应用,解题的关键是理解题意找到相等关系,利用一次函数的性质解题.
23.(1)证明见解析;(2)①;②BH的长为17或7.
【分析】
(1)证,即可得出结论;
(2)①连接,延长交于,设与的交点为,证,得,,证为等腰直角三角形,即得结论;
②分两种情况,证出点、、在一条
解析:(1)证明见解析;(2)①;②BH的长为17或7.
【分析】
(1)证,即可得出结论;
(2)①连接,延长交于,设与的交点为,证,得,,证为等腰直角三角形,即得结论;
②分两种情况,证出点、、在一条直线上,求出,则,由勾股定理求出,求出,即可得出答案.
【详解】
(1)∵四边形ABCD和四边形AEFG是正方形,
∴AD=AB=CB,AG=AE,∠DAB=∠GCE=90°,
∴∠DAB﹣∠GAF=∠GCE﹣∠GAF,
即∠DAG=∠BAE,
在△DAG和△BAE中,
,
∴△DAG≌△BAE(SAS),
∴DG=BE;
(2)①连接GH,延长HF交AB于N,设AB与EF的交点为M,如图2所示:
∵四边形BCHF是平行四边形,
∴HFBC,HF=BC=AB.
∵BC⊥AB,
∴HF⊥AB,
∴∠HFG=∠FMB,
又AGEF,
∴∠GAB=∠FMB,
∴∠HFG=∠GAB,
在△GAB和△GFH中,
,
∴△GAB≌△GFH(SAS),
∴GH=GB,∠GHF=∠GBA,
∴∠HGB=∠HNB=90°,
∴△GHB为等腰直角三角形,
∴BHBG,
∴;
②分两种情况:
a、如图3所示:
连接AF、EG交于点O,连接BE.
∵四边形BCHF为菱形,
∴CB=FB.
∵AB=CB,
∴AB=FB=13,
∴点B在AF的垂直平分线上.
∵四边形AEFG是正方形,
∴AF=EG,OA=OF=OG=OE,AF⊥EG,AE=FE=AG=FG,
∴点G、点E都在AF的垂直平分线上,
∴点B、E、G在一条直线上,
∴BG⊥AF.
∵AE=5,
∴AF=EGAE=10,
∴OA=OG=OE=5,
∴OB12,
∴BG=OB+OG=12+5=17,
由①得:BHBG=17;
b、如图4所示:
连接AF、EG交于点O,连接BE,
同上得:点B、E、G在一条直线上,OB=12,BG=OG+OB﹣OG=12﹣5=7,
由①得:BHBG=7;
综上所述:BH的长为17或7.
【点睛】
本题是四边形综合题目,考查了正方形的性质、菱形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、线段垂直平分线的判定等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.
24.(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E(-34,0);(3)存在,点的坐标为(-1,3)或45,125.
【解析】
【分析】
(1)分别令x=0,y=0即可确定A、B
解析:(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E;(3)存在,点的坐标为或.
【解析】
【分析】
(1)分别令x=0,y=0即可确定A、B的坐标,然后确定直线BC的解析式,然后再令y=0,即可求得C的坐标;
(2)先根据中点的性质求出D的坐标,然后再根据轴对称确定的坐标,然后确定DB1的解析式,令y=0,即可求得E的坐标;
(3)分别就D点在AB和D点BC上两种情况进行解答即可.
【详解】
解:(1)在中,
令,得,
令,得,
,.
把代入,,
得
直线为:.
在中,
令,得,
点的坐标为;
(2)如图点为所求
点是的中点,,.
.
点关于轴的对称点的坐标为.
设直线的解析式为.
把,代入,
得.
解得,.
故该直线方程为:.
令,得点的坐标为.
(3)存在,点的坐标为或.
①当点在上时,由
得到:,
由等腰直角三角形求得点的坐标为;
②当点在上时,如图,设交轴于点.
在与中,
.
,
点的坐标为,
易得直线的解析式为,
与组成方程组,
解得.
交点的坐标为
【点睛】
本题是一次函数的综合题,考查了利用待定系数法求一次函数的解析式、轴对称等知识点,掌握一次函数的函数的知识和差分类讨论的思想是解答本题的关键.
25.(1)见解析;(2),;(3)①;②
【分析】
(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;
(2)先计算出OA=,推出PB=
解析:(1)见解析;(2),;(3)①;②
【分析】
(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;
(2)先计算出OA=,推出PB=,利用勾股定理求出AP=,再利用面积法计算BH即可;
(3)①求出直线PM的解析式为y=x-3,再利用两点间的距离公式计算即可;
②易得直线BC的解析式为y=x+4,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算.
【详解】
(1)证明:∵Rt△OAB中,D为OB的中点,
∴AD=OB,OD=BD=OB,
∴DO=DA,
∴∠DAO=∠DOA=30°,∠EOA=90°,
∴∠AEO=60°,
又∵△OBC为等边三角形,
∴∠BCO=∠AEO=60°,
∴BC∥AE,
∵∠BAO=∠COA=90°,
∴CO∥AB,
∴四边形ABCE是平行四边形;
(2)解:在Rt△AOB中,∠AOB=30°,OB=8,
∴AB=4,
∴OA=,
∵四边形ABCE是平行四边形,
∴PB=PE,PC=PA,
∴PB=,
∴
∴,
即
∴;
(3)①∵C(0,4),
设直线AC的解析式为y=kx+4,
∵P(,0),
∴0=k+4,
解得,k=,
∴y=x+4,
∵∠APM=90°,
∴直线PM的解析式为y=x+m,
∵P(,0),
∴0=×+m,
解得,m=-3,
∴直线PM的解析式为y=x-3,
设M(x,x-3),
∵AP=,
∴(x-)2+(x-3)2=()2,
化简得,x2-4x-4=0,
解得,x1=,x2=(不合题意舍去),
当x=时,y=×()-3=,
∴M(,),
故答案为:(,);
②∵
∴直线BC的解析式为:,
联立,解得,
∴,
【点睛】
本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.
展开阅读全文