资源描述
人教小学五年级下册数学期末解答综合复习试卷含答案大全
1.某地环保部门对当地“白色污染”的主要来源调查情况如下。
来源
食品包装袋
快餐盒
农用地膜
占“白色污染”总量的几分之几
(1)这三种来源一共占“白色污染”总量的几分之几?
(2)食品包装袋比快餐盒与农用地膜的和多占“白色污染”总量的几分之几?
2.乐乐用一根1m长的铁丝围成一个三角形,量得三角形的一边是,另一边是,第三条边长多少米?它是一个什么三角形?
3.为了提高学生的生活实践能力,光明小学组织五年级同学去劳动教育基地实践,一共用去时,路上用去的时间占总时间的,吃饭与休息的时间共占总时间的,剩下的是劳动的时间。劳动的时间占总时间的几分之几?
4.蛋糕店进了一批砂糖。做蛋糕用了,做马卡龙和甜甜圈各用了,一共用了砂糖的几分之几?还剩几分之几?
5.甲、乙两人同时开车从相距720千米的两地相向而行,经过4小时相遇,甲每小时比乙慢4.8千米,甲、乙的速度分别是多少?(用方程解)
6.小明今年比爷爷小42岁,爷爷的年龄是小明的4.5倍。爷爷今年多少岁?(用方程解)
7.某养殖场养的兔子的只数是鸡的2倍,鸡和兔子的腿共有790只,鸡和兔子各有多少只?
8.同学们做了红、黄、蓝三种颜色的纸花共88朵。其中,黄花的朵数是红花的1.5倍,蓝花的朵数是黄花的2倍。同学们做了多少朵红纸花?
9.丁爷爷家要建一间新房,新房一面墙壁的平面图如图。如果每平方米要用96块砖,砌这面墙至少要用多少块砖?
10.有一批砖,每块砖长45厘米,宽30厘米。至少用多少块这样的砖才能铺成一个正方形?
11.小青家客厅长4.8米,宽4.2米,用正方形的地砖铺地正好铺满(且不需要切割),正方形的地砖边长最大是多少分米?一共需要多少块这样的地砖?
12.有一种地砖,长是45厘米,宽是30厘米,至少要用多少块这样的砖才能铺成一个实心的正方形?
13.学校的足球数先减去26,再乘3就和篮球一样多。篮球有30只,足球有多少只?(用方程解)
14.学校组织五、六年级同学听抗疫英雄巡回演讲会,一共有972人。报告厅每排可以坐18人,五年级坐了26排,六年级坐了多少排?(列方程解答)
15.同学们参加植树活动,六年级去了156人,比五年级人数的2倍少12人。五年级去了多少人?
16.水果店运来18箱桔子和25箱苹果,共重810千克,每箱桔子重20千克,每箱苹果重多少千克?
17.小明和爷爷一起去操场散步,操场一圈400米,小明走一圈需要8分钟,爷爷走一圈需要10分钟。
(1)如果两人同时同地出发,相背而行,多少分钟后相遇?
(2)如果两人同时同地出发,同方向而行,多少分钟后小明超出爷爷一整圈?
18.甲、乙两人从相距57km的两地同时出发相向而行,3小时后在途中相遇。甲每小时行驶8km,乙每小时行驶多少千米?(列方程解答)
19.北京和上海相距1320km。甲乙两列火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行125km,乙车每小时行多少千米?
20.甲、乙两辆汽车同时从同一个地点,向背而行,2.5小时后相距360千米。甲车的速度74千米/时,乙车的速度是多少千米/时?
21.街心花园是一个环形的设计。(如图)里边的花坛是一个半径5米的圆,外边是一条2米宽的小路。小路的面积是多大?绕小路外圈走一圈有多长?
22.在一座直径为40米的圆形假山周围铺一条4米宽的小路,这条小路的面积是多少平方米?沿这条小路的外边缘每隔3.14米装一盏路灯,一共要装多少盏路灯?
23.有一个圆片,半径为2厘米,绕着长方形外面滚动一周(如图),圆扫过的面积是多少平方厘米?
24.有一个周长是94.2米的圆形草坪,准备给它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种喷灌装置。你认为应选哪种比较合适?安装在什么地方?装好后最多可喷灌多大面积的草坪?
25.为了参加学校运动会的1分钟跳绳比赛,冬冬和平平提前10天进行训练,每天测试成绩如图:
(1)他们两人第1天的成绩相差( )个,第10天的成绩相差( )个。
(2)第( )天到第( )天平平的成绩进步最快。
(3)你认为通过10天训练,谁的进步大一些?
26.对生活垃圾进行分类,可以提高垃圾的经济价值,降低处理成本,减少土地资源的消耗等优点,推行垃圾分类已是大势所趋。下面是某城市2016~2020年生活垃圾中分类垃圾与未分类垃圾的数量统计图:
(1)2018年分类垃圾的数量占垃圾总量的( )(填几分之几)。
(2)分类垃圾的数量逐年( ),( )年起分类垃圾的数量超过了未分类垃圾的数量。
(3)看了这个统计结果你有什么感想或建议,写一写。
27.某商场A、B两种品牌电脑2020年月销售量情况统计如下图
(1)哪个月两种品牌电脑销售量相差最大?相差多少台?
(2)两种品牌电脑的月销售量变化趋势有什么不同?如果你是商场经理,这些信息对你有什么帮助?
28.下面是小红7-12岁每年身高与同龄女生标准身高的对比统计表。
(1)根据表中的数据,画出复式折线统计图。
(2)小红从( )岁到( )岁身高增长的最快。
(3)对比标准身高,说说小红7-12岁身高变化情况。
1.(1);
(2)
【分析】
(1)利用加法,求出这三种来源一共占“白色污染”总量的几分之几;
(2)先利用加法求出快餐盒与农用地膜的和占总量的几分之几,再利用减法求出食品包装袋比快餐盒与农用地膜的和
解析:(1);
(2)
【分析】
(1)利用加法,求出这三种来源一共占“白色污染”总量的几分之几;
(2)先利用加法求出快餐盒与农用地膜的和占总量的几分之几,再利用减法求出食品包装袋比快餐盒与农用地膜的和多占“白色污染”总量的几分之几。
【详解】
(1)
答:这三种来源一共占“白色污染”总量的;
(2)
=
=
答:食品包装袋比快餐盒与农用地膜的和多占“白色污染”总量的。
【点睛】
本题考查了分数加减法的应用,正确理解题意并列式是解题的关键。
2.;等腰三角形
【分析】
用铁丝长度减去已知的两条边的长度,就是第三条边的长度,根据三条边的长度确定三角形类型。
【详解】
=
答:第三条边长,它是一个等腰三角形。
【点睛】
封闭图形一周的长度
解析:;等腰三角形
【分析】
用铁丝长度减去已知的两条边的长度,就是第三条边的长度,根据三条边的长度确定三角形类型。
【详解】
=
答:第三条边长,它是一个等腰三角形。
【点睛】
封闭图形一周的长度叫周长,两条边相等的三角形叫等腰三角形。
3.【分析】
根据题意,把总时间看作单位“1”,减去路上用去的时间占总时间的,减去吃饭与休息的时间共占总时间的,剩下的是劳动时间占总时间的几分之几,即可解答。
【详解】
1--
=-
=-
=
答:劳
解析:
【分析】
根据题意,把总时间看作单位“1”,减去路上用去的时间占总时间的,减去吃饭与休息的时间共占总时间的,剩下的是劳动时间占总时间的几分之几,即可解答。
【详解】
1--
=-
=-
=
答:劳动的时间占总时间的。
【点睛】
本题考查分数加减法的计算,关键是单位“1”的确定。
4.;
【分析】
根据题目可知,这批砂糖是单位“1”,把做蛋糕用的量和做马卡龙和甜甜圈各用的量加起来,即可求出一共用了砂糖的几分之几;用1减去用的量即可求出还剩下几分之几。
【详解】
++
=+
=
1
解析:;
【分析】
根据题目可知,这批砂糖是单位“1”,把做蛋糕用的量和做马卡龙和甜甜圈各用的量加起来,即可求出一共用了砂糖的几分之几;用1减去用的量即可求出还剩下几分之几。
【详解】
++
=+
=
1-=
答:一共用了砂糖的;还剩下。
【点睛】
本题主要考查分数的加减法,要注意马卡龙用了砂糖的,甜甜圈也用了砂糖的。
5.甲的速度为92.4千米/时,乙的速度为87.6千米/时
【分析】
根据题意可知,“甲乙两车的速度和×相遇时间=总路程”,据此列方程解答即可。
【详解】
解:设乙的速度为x千米/时,则甲的速度为(x+
解析:甲的速度为92.4千米/时,乙的速度为87.6千米/时
【分析】
根据题意可知,“甲乙两车的速度和×相遇时间=总路程”,据此列方程解答即可。
【详解】
解:设乙的速度为x千米/时,则甲的速度为(x+4.8)千米/时;
4[x+(x+4.8)]=720
4[2x+4.8] =720
2x+4.8=180
x=87.6;
87.6+4.8=92.4(千米/时)
答:甲的速度为92.4千米/时,乙的速度为87.6千米/时。
【点睛】
熟练掌握路程、速度、时间之间的关系,进而确定题目中存在的数量关系是解答本题的关键。
6.54岁
【分析】
爷爷的年龄是小明的4.5倍,把小明今年的年龄设为未知数,则爷爷今年的年龄=小明今年的年龄×4.5;
等量关系式:爷爷今年的年龄-小明今年的年龄=42岁,据此列方程解答。
【详解】
解析:54岁
【分析】
爷爷的年龄是小明的4.5倍,把小明今年的年龄设为未知数,则爷爷今年的年龄=小明今年的年龄×4.5;
等量关系式:爷爷今年的年龄-小明今年的年龄=42岁,据此列方程解答。
【详解】
解:设今年小明的年龄是x岁,则爷爷的年龄是4.5x岁。
爷爷今年的年龄:4.5×12=54(岁)
答:爷爷今年54岁。
【点睛】
设出未知数找准题目中的等量关系式是用方程解决问题的关键。
7.鸡有79只,兔子有158只
【分析】
根据题意可知,“鸡的只数×2=兔子的只数”,“鸡的腿数+兔子的腿数=790”,据此列方程解答即可。
【详解】
解:设鸡有x只,则兔子有只;
2x+4×2x=79
解析:鸡有79只,兔子有158只
【分析】
根据题意可知,“鸡的只数×2=兔子的只数”,“鸡的腿数+兔子的腿数=790”,据此列方程解答即可。
【详解】
解:设鸡有x只,则兔子有只;
2x+4×2x=790
10x=790
x=79;
79×2=158(只);
答:鸡有79只,兔子有158只。
【点睛】
明确题目中存在的数量关系是解答本题的关键,根据只数关系设出未知量,根据腿数关系列方程。
8.16朵
【分析】
根据题意可知,“红花的朵数×1.5+红花的朵数×1.5×2+红花的朵数=总朵数”,据此列方程解答即可。
【详解】
解:设同学们做了x朵红纸花,则黄花的朵数为1.5x朵,蓝花的朵数为
解析:16朵
【分析】
根据题意可知,“红花的朵数×1.5+红花的朵数×1.5×2+红花的朵数=总朵数”,据此列方程解答即可。
【详解】
解:设同学们做了x朵红纸花,则黄花的朵数为1.5x朵,蓝花的朵数为2×1.5x朵;
1.5x+2×1.5x+x=88
5.5x=88
x=16;
答:同学们做了16朵红纸花。
【点睛】
根据红、黄、蓝三种颜色纸花的朵数关系设出未知量,根据总朵数列方程解答。
9.4896块
【分析】
根据三角形的面积公式:S=ah÷2,长方形的面积公式:S=ab,把数据代入公式求出这面墙的面积,然后用这面墙的面积乘每平方米用砖的块数即可。
【详解】
(6×2÷2+7.5×6
解析:4896块
【分析】
根据三角形的面积公式:S=ah÷2,长方形的面积公式:S=ab,把数据代入公式求出这面墙的面积,然后用这面墙的面积乘每平方米用砖的块数即可。
【详解】
(6×2÷2+7.5×6)×96
=(6+45)×96
=51×96
=4896(块)
答:砌这面墙至少要用4896块砖。
【点睛】
此题主要考查三角形、长方形面积公式的灵活运用,关键是熟记公式。
10.6块
【详解】
45和30的最小公倍数是90。
(90÷45)×(90÷30)=6(块)
答:至少要用6块这样的地砖才能铺成一个正方形。
解析:6块
【详解】
45和30的最小公倍数是90。
(90÷45)×(90÷30)=6(块)
答:至少要用6块这样的地砖才能铺成一个正方形。
11.6分米;56块
【分析】
由题意可知:地砖边长最大是客厅长、宽的最大公因数;分别求出长、宽有几块,再求积即可;据此解答。
【详解】
4.8米=48分米
4.2米=42分米
48=2×2×2×2×3
解析:6分米;56块
【分析】
由题意可知:地砖边长最大是客厅长、宽的最大公因数;分别求出长、宽有几块,再求积即可;据此解答。
【详解】
4.8米=48分米
4.2米=42分米
48=2×2×2×2×3
42=2×3×7
所以48和42的最大公因数是2×3=6,即边长最大是6分米。
48÷6=8(块)
42÷6=7(块)
8×7=56(块)
答:正方形的地砖边长最大是6分米,一共需要56块这样的地砖。
【点睛】
本题主要考查最大公因数的实际应用,明确地砖边长最大值是客厅长、宽的最大公因数是解题的关键。
12.6块
【分析】
根据题意,用长方形的砖块铺成一个大正方形,求至少需要多少块,则正方形的边长为45和30的最小公倍数;求出铺成的正方形的边长,进而求出长需要几块,宽需要几块,即可求出需要的总块数。
【
解析:6块
【分析】
根据题意,用长方形的砖块铺成一个大正方形,求至少需要多少块,则正方形的边长为45和30的最小公倍数;求出铺成的正方形的边长,进而求出长需要几块,宽需要几块,即可求出需要的总块数。
【详解】
45=3×3×5;
30=2×3×5;
45和30的最小公倍数是3×5×3×2=90;
(90÷45)×(90÷30)
=2×3
=6(块);
答:至少要用6块这样的砖才能铺成一个实心的正方形。
【点睛】
解答本题的关键是明确铺成的正方形的边长为45和30的最小公倍数,从而进一步解答。
13.36只
【分析】
可以设学校足球有x只,根据题目可知,(足球数量-26)×3=篮球数量,x和篮球的数量代入等式解方程即可。
【详解】
解:设足球有x只。
(x-26)×3=30
x-26=30÷3
解析:36只
【分析】
可以设学校足球有x只,根据题目可知,(足球数量-26)×3=篮球数量,x和篮球的数量代入等式解方程即可。
【详解】
解:设足球有x只。
(x-26)×3=30
x-26=30÷3
x-26=10
x=10+26
x=36
答:足球有36只。
【点睛】
本题主要考查列方程解应用题,找准等量关系;要注意是足球数量减去26的差,所以要加括号。
14.28排
【分析】
根据题意可知,每排可坐18人,五年级坐26排,五年级坐的人数是18×26,设六年级坐x排,六年级人数有18x人,五年级和六年级一共972人,列方程:18×26+18x=972,解方
解析:28排
【分析】
根据题意可知,每排可坐18人,五年级坐26排,五年级坐的人数是18×26,设六年级坐x排,六年级人数有18x人,五年级和六年级一共972人,列方程:18×26+18x=972,解方程,即可解答。
【详解】
解:设六年级做x排
18×26+18x=972
468+18x=972
18x=972-468
18x=504
x=504÷18
x=28
答:六年级坐了28排。
【点睛】
本题考查等量关系,根据题意找出相关的量,列方程,解方程。
15.84人
【分析】
根据题意了,设五年级去了x人,六年级去了156人,比五年级的2倍少12人,就是五年级人数×2倍-12人=六年级人数,列方程:2x-12=156,解方程,即可解答。
【详解】
解:设
解析:84人
【分析】
根据题意了,设五年级去了x人,六年级去了156人,比五年级的2倍少12人,就是五年级人数×2倍-12人=六年级人数,列方程:2x-12=156,解方程,即可解答。
【详解】
解:设五年级人数x人
2x-12=156
2x=156+12
2x=168
x=168÷2
x=84
答:五年级去了84人。
【点睛】
本题考查方程的实际应用,根据题意找出相关的量,列方程,解方程。
16.18千克
【分析】
此题的等量关系是:18箱桔子的重量+25箱苹果的重量=810千克,已知每箱桔子重20千克,设出每箱苹果的重量,列方程解答即可。
【详解】
解:设每箱苹果重x千克,由题意得,
18
解析:18千克
【分析】
此题的等量关系是:18箱桔子的重量+25箱苹果的重量=810千克,已知每箱桔子重20千克,设出每箱苹果的重量,列方程解答即可。
【详解】
解:设每箱苹果重x千克,由题意得,
18×20+25x =810
360+25x=810
25x=810-360
25x=450
x=450÷25
x=18;
答:每箱苹果重18千克.
【点睛】
列方程解决实际问题的关键是找准数量关系正确列出方程。
17.(1)分钟;(2)40分钟
【分析】
(1)把路程看作单位“1”,根据:路程÷时间=速度,分别求出小明的速度和爷爷的速度,然后根据:路程÷速度之和=相遇时间,解答即可;
(2)把路程看作单位“1”,
解析:(1)分钟;(2)40分钟
【分析】
(1)把路程看作单位“1”,根据:路程÷时间=速度,分别求出小明的速度和爷爷的速度,然后根据:路程÷速度之和=相遇时间,解答即可;
(2)把路程看作单位“1”,根据:路程÷时间=速度,分别求出小明的速度和爷爷的速度,然后根据:路程差÷速度之差=追击时间,解答即可。
【详解】
(1)1÷(1÷8+1÷10)
=1÷
=(分钟)
答:如果两人同时同地出发,相背而行,分钟后相遇。
(2)1÷(1÷8-1÷10)
=1÷
=40(分钟)
答:如果两人同时同地出发,相向而行,40分钟后小明超出爷爷整整一圈。
【点睛】
此题属于行程问题,解答此题关键是明确把路程看作单位“1”,根据路程、速度、时间三者之间的关系进行解答。
18.11千米
【分析】
等量关系式:(甲的速度+乙的速度)×相遇时间=两地之间的距离,据此解答。
【详解】
解:设乙每小时行驶x千米。
(8+x)×3=57
8+x=57÷3
8+x=19
x=19-8
解析:11千米
【分析】
等量关系式:(甲的速度+乙的速度)×相遇时间=两地之间的距离,据此解答。
【详解】
解:设乙每小时行驶x千米。
(8+x)×3=57
8+x=57÷3
8+x=19
x=19-8
x=11
答:乙每小时行驶11千米。
【点睛】
找出题目中的等量关系式是解答题目的关键。
19.95千米
【分析】
根据题意,设乙车每小时行x千米,然后根据等量关系:甲车行驶的路程+乙车行驶的路程=总路程,解答即可。
【详解】
解:设乙车每小时行x千米。
125×6+6x=1320
750+6
解析:95千米
【分析】
根据题意,设乙车每小时行x千米,然后根据等量关系:甲车行驶的路程+乙车行驶的路程=总路程,解答即可。
【详解】
解:设乙车每小时行x千米。
125×6+6x=1320
750+6x=1320
6x=570
x=570÷6
x=95
答:乙车每小时行95千米。
【点睛】
本题的关键是根据等量关系正确的列出方程。
20.70千米/时
【分析】2.5小时可以看作是两车的相遇时间。速度和=总路程÷相遇时间,据此用360除以2.5求出两车的速度和,再减去甲车的速度即可求出乙车的速度。
【详解】
360÷2.5-74
=1
解析:70千米/时
【分析】2.5小时可以看作是两车的相遇时间。速度和=总路程÷相遇时间,据此用360除以2.5求出两车的速度和,再减去甲车的速度即可求出乙车的速度。
【详解】
360÷2.5-74
=144-74
=70(千米/时)
答:乙车的速度是70千米/时。
【点睛】
本题属于相遇问题。熟练掌握速度和与总路程、相遇时间的关系是解决相遇问题的关键。
21.36平方米 43.96米
【解析】
【详解】
5+2=7(米)
3.14×(72-52)
=3.14×24
=75.36(平方米)
3.14×7×2=43.96(米)
解析:36平方米 43.96米
【解析】
【详解】
5+2=7(米)
3.14×(72-52)
=3.14×24
=75.36(平方米)
3.14×7×2=43.96(米)
22.64平方米;48盏
【分析】
(1)分别求出大圆的半径与小圆的半径,然后利用圆环的面积公式=π(R-r),即可解答;(2)此题是在封闭路线上装路灯,则间隔数=装路灯的数量,先根据圆的周长公式求出小路
解析:64平方米;48盏
【分析】
(1)分别求出大圆的半径与小圆的半径,然后利用圆环的面积公式=π(R-r),即可解答;(2)此题是在封闭路线上装路灯,则间隔数=装路灯的数量,先根据圆的周长公式求出小路的周长,再用周长除以间距3.14米,据此解答即可。
【详解】
40÷2=20(米),20+4=24(米)
3.14×(24-20)
=3.14×176
=552.64(平方米)
3.14×24×2÷3.14
=150.72÷3.14
=48(盏)
答:这条小路的面积是552.64平方米,一共要装48盏路灯。
【点睛】
(1)此题考查了圆环的面积公式的灵活应用,这里的关键是把实际问题转化成数学问题,并找到对应的数量关系;(2)此题考查了植树问题的基本应用,要注意如果是两端都植树,那么间隔数=树的棵树-1,;若果两端都不植树,则间隔数=树的棵树+1。
23.24平方厘米
【解析】
【详解】
略
解析:24平方厘米
【解析】
【详解】
略
24.2÷3.14÷2=15(米)
15×15×3.14=706.5(平方米)
答:应选射程为15米的喷灌装置,安装在草坪的中心。装好后最多可喷灌706.5平方米的草坪。
【解析】自动旋转喷灌装置旋转一
解析:2÷3.14÷2=15(米)
15×15×3.14=706.5(平方米)
答:应选射程为15米的喷灌装置,安装在草坪的中心。装好后最多可喷灌706.5平方米的草坪。
【解析】自动旋转喷灌装置旋转一周,喷灌的面积就是圆的面积,射程是圆的半径。
25.(1)1;2
(2)6;7
(3)见详解
【分析】
(1)用第1天两个人跳的个数相减即可;用第10天两人跳的个数相减即可;
(2)通过统计图观察,找出两天成绩相差的最多(或者直线越趋近于竖直),即进
解析:(1)1;2
(2)6;7
(3)见详解
【分析】
(1)用第1天两个人跳的个数相减即可;用第10天两人跳的个数相减即可;
(2)通过统计图观察,找出两天成绩相差的最多(或者直线越趋近于竖直),即进步的最快。
(3)两个人的成绩都呈上升趋势,通过统计图观察谁上升的趋势比较明显即可,(说法合理即可)
【详解】
(1)第1天:153-152=1(个)
第10天:167-165=2(个)
(2)通过折线统计图观察,可以知道第6天到第7天平平的成绩进步最快。
(3)我认为平平进步的快。
因为平平的成绩只有第4天到第5天降低,其他时候都是提升状态。(答案合理即可)
【点睛】
本题主要考查复式折线统计图的分析,学会分析统计图的数据并灵活运用。
26.(1)
(2)分类垃圾的数量逐年增加;2020
(3)人们对分类垃圾的意识在逐渐增强,继续推行垃圾分类,争取所有垃圾都能分类。
【分析】
(1)观察统计图,找出2018年分类垃圾和没分类垃圾的吨数,
解析:(1)
(2)分类垃圾的数量逐年增加;2020
(3)人们对分类垃圾的意识在逐渐增强,继续推行垃圾分类,争取所有垃圾都能分类。
【分析】
(1)观察统计图,找出2018年分类垃圾和没分类垃圾的吨数,用分类垃圾除以分类垃圾与没分类垃圾的和;
(2)观察分类垃圾的趋势,找出哪年分类垃圾超过没分垃圾的数量;
(3)根据统计图提供的的信息,说说你对分类垃圾的意义。
【详解】
(1)10÷(12+10)
=10÷22
=
(2)分类垃圾的数量逐年增加,2020年起分类垃圾的数量超过了没分类垃圾的数量;
(3)人们对分类垃圾的意识在逐渐增强,继续推行垃圾分类,争取所有垃圾都能分类。(答案不唯一)
【点睛】
本题考查根据统计图提供的信息,解答问题。
27.(1)2月;68台
(2)随着时间的增加,A品牌电脑销售量呈下降趋势,B品牌电脑销售量呈上升趋势;如果我是商场经理,会多进一些B品牌电脑。
【分析】
(1)根据统计图可知,2月份表示两种品牌电脑销售
解析:(1)2月;68台
(2)随着时间的增加,A品牌电脑销售量呈下降趋势,B品牌电脑销售量呈上升趋势;如果我是商场经理,会多进一些B品牌电脑。
【分析】
(1)根据统计图可知,2月份表示两种品牌电脑销售量的点相距的最远,说明销量相差最大,两种品牌电脑销售量相减即可;
(2)随着时间的增加,A品牌电脑销售量呈下降趋势,B品牌电脑销售量呈上升趋势;如果我是商场经理,会多进一些B品牌电脑。
【详解】
(1)90-22=68(台);
答:2月份两种品牌电脑销售量相差最大,相差68台;
(2)随着时间的增加,A品牌电脑销售量呈下降趋势,B品牌电脑销售量呈上升趋势;如果我是商场经理,会多进一些B品牌电脑。
【点睛】
读懂统计图中的数学信息是解答本题的关键,要明确点和线段表示的意义。
28.(1)见详解
(2)11;12
(3)小红身高呈上升趋势,11岁前低于标准身高,11岁后超过标准身高。
【分析】
(1)折线统计图的绘制方法:根据图纸的大小,确定纵轴和横轴每一个单位的长度;根据纵轴
解析:(1)见详解
(2)11;12
(3)小红身高呈上升趋势,11岁前低于标准身高,11岁后超过标准身高。
【分析】
(1)折线统计图的绘制方法:根据图纸的大小,确定纵轴和横轴每一个单位的长度;根据纵轴、横轴的单位长度,画出纵轴和横轴,并画出方格图;根据各数量的多少,在方格图的纵线或横线(或纵、横的交点)上描出表示数量多少的点;把各点用线段顺次连接起来;写出标题,注明单位,可以写明调查日期或制图日期。复式折线统计图还要画出图例。
(2)观察统计图,折线往上坡度越陡,身高增长越快。
(3)答案不唯一,合理即可。
【详解】
(1)
(2)小红从11岁到12岁身高增长的最快。
(3)小红身高呈上升趋势,11岁前低于标准身高,11岁后超过标准身高。
【点睛】
折线统计图不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况。复式折线统计图表示2个及以上的量的增减变化情况。
展开阅读全文