1、. 向量知识点总结一、教学要求: 1. 理解向量平面向量、空间向量的概念,掌握向量的几何表示,了解共线向量的概念,掌握向量的加法、减法,掌握实数与向量的积,理解两个向量共线的充要条件。了解向量的根本定理,掌握向量的数量积及其几何意义,了解用向量的数量积处理有关长度、角度和垂直问题,理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。 2. 理解向量平面向量、空间向量的坐标的概念,掌握向量的直角坐标运算及两点间的距离公式。 3. 掌握线线的定比分点和中点坐标公式,并掌握平移公式。二、知识串讲:平面向量及其运算一向量的根本运算 1. 有关概念 1向量既有大小又有方向的量叫做向量。 常用有向
2、线段表示向量 3共线向量平行向量方向相同或相反的向量叫做平行向量或共线向量。 向量可以在平面或空间平行移动而不变。 规定:零向量与任一向量平行。 2. 向量有三种形式或三种表示 3. 向量的加法、减法与数乘 1向量的加法三角形法那么或平行四边形法那么如图:向量加法的多边形法那么2向量的减法: 3实数与向量的乘积 4. 向量的运算法那么加、减、数乘 此不等式表示三角形两边之和大于第三边,两边之差小于第三边,也称为三角不等式。 5. 平面向量根本定理向量的分解定理这个定理说明:平面内的任一向量都可以沿两个不共线向量分解为唯一一对向量的有向量的一组基底。 应用:二向量的坐标运算示。也相同。 2. 向量的坐标运算 三平面向量的数量积 1. 数量积的概念 2. 数量积的运算法那么 注意:数量积不满足结合律! 3. 重要性质四定比分点与平移 1. 线段的定比分点 2. 平移实用文档.