收藏 分销(赏)

人教版八年级上学期压轴题强化数学综合检测试题(一).doc

上传人:精*** 文档编号:1775464 上传时间:2024-05-09 格式:DOC 页数:17 大小:598.04KB
下载 相关 举报
人教版八年级上学期压轴题强化数学综合检测试题(一).doc_第1页
第1页 / 共17页
人教版八年级上学期压轴题强化数学综合检测试题(一).doc_第2页
第2页 / 共17页
人教版八年级上学期压轴题强化数学综合检测试题(一).doc_第3页
第3页 / 共17页
人教版八年级上学期压轴题强化数学综合检测试题(一).doc_第4页
第4页 / 共17页
人教版八年级上学期压轴题强化数学综合检测试题(一).doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、人教版八年级上学期压轴题强化数学综合检测试题(一)1如图,在平面直角坐标系中,已知点,且,为轴上点右侧的动点,以为腰作等腰,使,直线交轴于点(1)求证:;(2)求证:;(3)当点运动时,点在轴上的位置是否发生变化,为什么?2在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(a,0)、点 B(0, b),且 a、b 满足a2+b24a8b+20=0,点 P 在直线 AB 的右侧,且APB45(1)a ;b (2)若点 P 在 x 轴上,请在图中画出图形(BP 为虚线),并写出点 P 的坐标;(3)若点 P 不在 x 轴上,是否存在点P,使ABP 为直角三角形?若存在,请求出此时P的坐

2、标;若不存在,请说明理由3如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作DBO=ABO,点H为y轴上的点,CAH=BAO,BD交y轴于点E,直线DO交AC于点C(1)证明:ABE为等边三角形;(2)若CDAB于点F,求线段CD的长;(3)动点P从A出发,沿AOB路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿BOA路线运动,速度为2个单位长度每秒,到A点处停止运动两点同时开始运动,都要到达相应的终点才能停止在某时刻,作PMCD于点M,QNCD于点N问两动点运动多长时间时OPM与OQN全等?4等腰RtABC中,BAC=90,AB=AC,点A、点B分别是

3、y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;(2)如图(2),当等腰RtABC运动到使点D恰为AC中点时,连接DE求证:ADB=CDE;(3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角BOD和等腰直角ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度5已知ABC中,BAC=60,以AB和BC为边向外作等边ABD和等边BCE(1)连接AE、CD,如图1,求证:

4、AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN(3)若ABBC,延长AB交DE于M,DB=,如图3,则BM=_(直接写出结果)6如图,在ABC中,点D为直线BC上一动点,DAE90,ADAE(1)如果BAC90,ABAC如图1,当点D在线段BC上时,线段CE与BD的位置关系为_,数量关系为_;如图2,当点D在线段BC的延长线上时,中的结论是否仍然成立?请说明理由;(2)如图3,若ABC是锐角三角形,ACB=45,当点D在线段BC上运动时,证明:CEBD7如图,和中,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点(1)求证:;(2)设,请用含的式子表示,并

5、求的最大值;(3)当时,的取值范围为,求出,的值8已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,(1)如图1,若,求的度数(2)如图1,求证:(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明)【参考答案】2(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;解析:(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全

6、等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;(3)设,由全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论【详解】解:(1)证明:,解得,作于点,在与中,;(2)证明:,即,在与中,;(3)点在轴上的位置不发生改变理由:设,由(2)知,为定值,长度不变,点在轴上的位置不发生改变【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键3(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,2)【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;(2)根据题意画出图形,由(1)得出OB的长,结合AP解析:(1)

7、2,4;(2)见解析,(4,0);(3)P(4,2)或(2,2)【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;(2)根据题意画出图形,由(1)得出OB的长,结合APB45,得出OPOB,可得点B的坐标;(3)分当ABP90时和当BAP90时两种情况进行讨论,结合全等三角形的判定和性质即可求出点P坐标.【详解】解:(1)a2+b24a8b+20=0,( a24a+4)+(b28b+16)0,( a2)2+(b4) 20a2,b4,故答案为:2,4;(2)如图 1,由(1)知,b4,B(0,4),OB4,点 P 在直线 AB 的右侧,且在 x 轴上,APB45,OPOB4,P(4,0

8、),故答案为:(4,0);(3)存在理由如下:由(1)知 a2,b4,A(2,0),B(0,4),OA2,OB4,ABP 是直角三角形,且APB45,只有ABP90或BAP90,、如图 2,当ABP90时,APBBAP45,ABPB ,过点 P 作 PCOB 于 C,BPC+CBP90,CBP+ABO90 ,ABOBPC,在AOB 和BCP 中, ,AOBBCP(AAS),PCOB4,BCOA2,OCOBBC2,P(4,2),、如图3,当BAP90时, 过点 P作 PDOA 于 D,同的方法得,ADPBOA,DPOA2,ADOB4,ODADOA2,P(2,2);即:满足条件的点 P(4,2)或

9、(2,2);【点睛】本题考查了非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,难度不大,解题的关键是要根据直角三角形的性质进行分类讨论.4(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【分析】(1)先证AOBEOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知ABE解析:(1)详见解析;(2)CD=;(3)当两动点运动时间为、6秒时,OPM与OQN全等.【分析】(1)先证AOBEOB得到AE=BE=AB,从而可以得出结论;(2)由(1)知ABE=BEA=EAB=60,进而得出AOF=30,利用含30角的直角三角形的性质得到AF、

10、OF的长再证明ACF=AOF=30,D=30,同理得出CF、DF的长,进而可得出结论(3)设运动的时间为t秒然后分四种情况讨论:当点P、Q分别在y轴、x轴上时,;当点P、Q都在y轴上时,;当点P在x轴上,Q在y轴且二者都没有提前停止时,;当点P在x轴上,Q在y轴且点Q提前停止时,列方程求解即可【详解】(1)在AOB与EOB中,AOB=EOB,OB=OB,EBO=ABO,AOBEOB (ASA),AO=EO=3,BE=AB=6,AE=BE=AB=6,ABE为等边三角形(2)由(1)知ABE=BEA=EAB=60CDAB,AOF=30,AF=在RtAOF中,OF=CAH=BAO =60,CAF =

11、60,ACF=AOF=30,AO=AC又CDAB,CF=AB=6,AF=,BF=在RtBDF中,DBF =60,D=30,BD=由勾股定理得:DF=,CD=(3)设运动的时间为t秒当点P、Q分别在y轴、x轴上时,PO=QO得:,解得:(秒);当点P、Q都在y轴上时,PO=QO得:,解得(秒);当点P在x轴上,Q在y轴且二者都没有提前停止时,则PO=QO,得:,解得:,不合题意,舍去当点P在x轴上,Q在y轴且点Q提前停止时,有,解得:(秒)综上所述:当两动点运动时间为、6秒时,OPM与OQN全等【点睛】本题考查了全等三角形的判定、含30角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性

12、质正确分类讨论是解题的关键5(1)A(0,1);(2)见解析;(3)不变,BP= 2【分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFABO(AAS),结合该全等三角形的对应边相等易解析:(1)A(0,1);(2)见解析;(3)不变,BP= 2【分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;(2)过点C作CGAC交y轴于点G,则ACGABD(ASA),即得CG=AD=CD,ADB=G,由DCE=GCE=45,可证DCEGCE(SAS)得CDE=G,从

13、而得到结论;(3)BP的长度不变,理由如下:如图(3),过点C作CEy轴于点E,构建全等三角形:CBEBAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4再结合已知条件和全等三角形的判定定理AAS得到:CPEDPB,故BP=EP=2(1)如图(1),过点C作CFy轴于点F,CFy轴于点F,CFA=90,ACF+CAF=90,CAB=90,CAF+BAO=90,ACF=BAO,在ACF和ABO中,ACFABO(AAS),CF=OA=1,A(0,1);(2)如图2,过点C作CGAC交y轴于点G,CGAC,ACG=90,CAG+AGC=90,AOD=90,ADO+DAO=90

14、,AGC=ADO,在ACG和ABD中,ACGABD(AAS),CG=AD=CD,ADB=G,ACB=45,ACG=90,DCE=GCE=45,在DCE和GCE中,DCEGCE(SAS),CDE=G,ADB=CDE;(3)BP的长度不变,理由如下:如图(3),过点C作CEy轴于点EABC=90,CBE+ABO=90BAO+ABO=90,CBE=BAOCEB=AOB=90,AB=AC,CBEBAO(AAS),CE=BO,BE=AO=4BD=BO,CE=BDCEP=DBP=90,CPE=DPB,CPEDPB(AAS),BP=EP=2【点睛】本题考查了三角形综合题主要利用了全等三角形的性质定理与判定定

15、理,解决本题的关键是作出辅助线,构建全等三角形6(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AN解析:(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AND,进而判断出BAC=ACF,即可判断出ABCCFA,即可得出结论;(3)先判断出ABCHEB(ASA),得出,再判断出ADMHEM (AAS),得出AM=HM,即可得出结论(1)解:ABD和BCE是等边三角形,BD=AB

16、,BC=BE,ABD=CBE=60,ABD+ABC=CBE+ABC,DBC=ABE,ABEDBC(SAS),AE=CD;(2)解:如图,延长AN使NF=AN,连接FC,N为CD中点,DN=CN,AND=FNC,ADNFCN(SAS),CF=AD,NCF=AND,DAB=BAC=60ACD +ADN=60ACF=ACD+NCF=60,BAC=ACF,ABD是等边三角形,AB=AD,AB=CF,AC=CA,ABCCFA (SAS),BC=AF,BCE是等边三角形,CE=BC=AF=2AN;(3)解: ABD是等边三角形,BAD=60,在RtABC中,ACB=90BAC=30,如图,过点E作EH /

17、 AD交AM的延长线于H,H=BAD=60,BCE是等边三角形,BC=BE,CBE=60,ABC=90,EBH=90CBE=30=ACB,BEH=180EBHH=90=ABC,ABCHEB (ASA),AD=EH,AMD=HME,ADMHEM (AAS),AM=HM,故答案为:【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键7(1)CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角解析:(1)

18、CEBD;CE=BD;结论仍成立,理由见解析;(2)证明见解析【分析】(1)根据BAD=CAE,BA=CA,AD=AE,运用“SAS”证明ABDACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;先根据“SAS”证明ABDACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到中的结论仍然成立;(2)先过点A作AGAC交BC于点G,画出符合要求的图形,再结合图形判定GADCAE,得出对应角相等,即可得出结论(1)BAD=90DAC,CAE=90DAC,BAD=CAE又 BA=CA,AD=AE,ABDACE(SAS),ACE=B=45,CE=BDACB

19、=B=45,ECB=45+45=90,即 CEBD故答案为:CEBD;CE=BD当点D在BC的延长线上时,的结论仍成立DAE=90,BAC=90,DAE=BAC,DAB=EAC,又AB=AC,AD=AE,DABEAC(SAS),CE=BD,ACE=ABDBAC=90,AB=AC,ABC=45,ACE=45,BCE=ACB+ACE=90,即 CEBD;(2)证明:过点A作AGAC交BC于点G,ACB=45,AGC=45,AC=AG,即ACG是等腰直角三角形,GAD+DAC=90=CAE+DAC,GAD=CAE,又DA=EA,GADCAE(SAS),ACE=AGD=45,BCE=ACB+ACE=9

20、0,即CEBD【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解8(1)见解析(2),3(3)m105,n150【分析】(1)由条件易证,得,即可得证(2)PDAD-AP6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD解析:(1)见解析(2),3(3)m105,n150【分析】(1)由条件易证,得,即可得证(2)PDAD-AP6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即ADBC时AP的长度,此时PD可得最大值(3)为与的角平分线的交点,应用

21、“三角形内角和等于180”及角平分线定义,即可表示出,从而得到m,n的值(1)解:在和中,如图1即(2)解:当ADBC时,APAB3最小,即PD633为PD的最大值(3)解:如图2,设则 为与的角平分线的交点即【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值9(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证解析:(1)BAC=50;(2)见解

22、析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明ABHEAF即可解决问题;(3)先证明ACDFAG,推出ACD=FAG,再证明BCF=150即可(1)AE=AB,AEB=ABE=65,EAB=50,AC=AF,ACF=AFC=75,CAF=30,EAF+BAC=180,EAB+2ABC+FAC=180,50+2BAC+30=180,BAC=50(2)证明:延长AD至H,使DH=AD,连接BH,EF=2AD,AH=EF,在BDH和CDA中,BDHCDA,HB=AC=AF,BHD=CAD,ACBH,A

23、BH+BAC=180,EAF+BAC=180,EAF=ABH,在ABH和EAF中,ABHEAF,AEF=ABH,EF=AH=2AD,(3)结论:GAF-CAF=60由(1)得,AD=EF,又点G为EF中点,EG=AD,在EAG和ABD中,EAGABD,EAG=ABC=60,AEB是等边三角形,ABE=60,CBM=60,在ACD和FAG中,ACDFAG,ACD=FAG,AC=AF,ACF=AFC,在四边形ABCF中,ABC+BCF+CFA+BAF=360,60+2BCF=360,BCF=150,BCA+ACF=150,GAF+(180-CAF)=150,GAF-CAF=60.【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服